Variance of the Difference-in-Means Estimator*

Thomas Leavitt

1 Variance of Difference-in-Means estimator for the Sample Average
Treatment Effect (SATE)

1.1 Setup

Let the index ¢ € {1,...,n} run over n units in a finite sample, S,, where n > 4. Of these
n units, ny > 2 are assigned to the treatment condition and no > 2 are assigned to the control
condition, where nr+n¢c = n. Although not necessary for the derivation of the Difference-in-Means
estimator’s variance, these assumptions on the sizes of n, ny and n¢ ensure that the conservative
estimator of the Difference-in-Means estimator’s variance is well defined. Let the binary indicator
variable Z; € {0, 1} denote whether unit 7 is assigned to treatment (Z; = 1) or control (Z; = 0). The
set ) = {z Py %= nT} contains the possible values of Z = [Zl, e Zn} T. Under complete
random assignment, the number of elements in the set €2 is (n"T) By contrast, under n independent
Bernoulli assignments, there would be 2" possible assignment vectors. However, even if ny is not
fixed by design (as in complete random assignment), we can fix ny by conditioning on its observed
value. The randomization distribution conditional on the realized ny yields the same randomization
distribution one would obtain if ny had been fixed ex ante by design. Hence, this general setup
and the proof to follow pertains to both simple and complete random assignment even though
the argument by which one can regard nr as fixed is slightly different under simple and complete

assignment mechanisms.
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Adopting the terminology of Freedman (2009) and later Gerber and Green (2012), define a potential
outcomes schedule as a vector-valued function, y : 0 — R", which maps the set of assignments, €2,
to an n-dimensional vector of real numbers, R". More intuitively, a potential outcomes schedule
is a listing of how each study participant would have responded to any z € () that a random
assignment process could produce. The vectors of potential outcomes are the elements in the
image of the potential outcomes schedule, y : 2 — R" and the individual potential outcomes for

unit ¢ € {1,...,n} are the ith entries of each of the n-dimensional vectors of potential outcomes.

n
nr

With Q| possible assignments, where [2] = (") under complete random assignment, there are
in principle |Q| vectors of potential outcomes.! However, under the Stable Unit Treatment Value
Assumption (SUTVA)? (Cox, 1958; Rubin, 1980, 1986), let yr; denote the common outcome value
of unit ¢ for all z € Q with z; = 1. Likewise, let y¢; denote the common outcome value of
unit ¢ for all z € ) with z; = 0. The individual causal effect for unit 7 on the additive scale is
T: = y1ri — Yoi- The vectors yo and yr denote the collection of control and treatment potential
outcomes, respectively, for all n units, and 7 denotes the collection of individual, additive effects
for all n units. The observed outcome for unit i € {1,...,n} is Y; = Zyyr; + (1 — Z;) yci, which is

either yr; or yo; depending on whether the randomly selected z € ) is with z; = 1 or z; = 0.

The target of interest is the Sample Average Treatment Effect (SATE), tsate == n"1 > 7. Define
i=1

the Difference-in-Means estimator of 7garg under complete random assignment as

n
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For the expectation and variance of this estimator in Equation (1) with respect to the SATE, I
write Eq [-] and Varg [-] to indicate that the expectation and variance pertain to only randomness

of the assignment process.

1.2 Derivation of variance of Difference-in-Means estimator for the SATE

Proposition 1. The variance of T for the Tsarr under complete random assignment is

(2) Varg [#] = S%gﬂ N S?féc) - 52727)

)

IFor an arbitrary set W, let |WW| denote the cardinality of (i.e., the number of elements in) the set W.

2SUTVA implies that (1) units in the experiment respond to only the treatment condition to which each unit
is individually assigned and (2) the treatment condition is actually the same treatment for all units assigned to
treatment and the control condition is the same for all units assigned to control.



where

(3) Sa(yr) = (ni 1) Zz:; yri — = 1:1 yTz')
(4) Si(yc) = <n i 1) Zz”; Yyoi — % inl yci) ?
) s =(5) 3 [=- 13 )

Proof. Building on Imbens and Rubin (2015, Chapter 6, Appendix A), we will break the proof

into several steps:

Step 1: We will show that we can write the Difference-in-Means estimator in (1) in terms of not
only Z;, but also the centered treatment variable A; = Z; — Eq [Z;]. Doing so will greatly simplify

the subsequent algebra for our derivation of the variance.

Step 2: The potential outcomes, {yr;,yci},—,, are fixed and observed outcomes inherit their
randomness only from the treatment assignment variable. Thus, to derive the variance of the
Difference-in-Means estimator (written now in terms of A;), we will need to derive Eq [A4;], Varqg [A4;]

and Cov [Al-, Aj} for i # 7.

Step 3: We will rely on the expressions for S?(yr) and S2(yc) above, as well as on the following
algebraic equivalence that we will need to prove:

(6) Sa(r) = | Si(yr) — Si(yc) — n(n2—1) Z (yTi - % A yTi) (yCi - % ZyCz)

i=1

Step 4: Once we have completed the three previous steps, we will rely only on the linearity of

expectations, rules of variance and (often very messy) algebra.

Step 1

First, note that we can re-write the estimator as

n
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Because n = ng+ng, note that 1 = , so instead of (1 — Z;) we can write (u — Zl-):

n

n (nc + nr
- Z Ziyri — —— — Zi ) yci
no n

which after a little bit of algebra yields
(7) D> —\Zi——+—yri—— |——|Z—— || vei,

where A; is the centered treatment variable, A; = Z; — Eq [Z;], because, under complete random
nr

assignment, Eq [Z;] = —.
n

Therefore, we can re-write (7) as

n n
— E < >yTz_ (C —Ai> Yci,
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which, with a bit more algebra, is equivalent to

n n
*Zyﬂ yoi+— ZA< yri + ncyCi)—TSATE+ ZA( yTHrnCycz)

TSATE

Step 2
Thus far, we have shown that the Difference-in-Means estimator in (1) is equivalent to
(8) TSATE + — Z A ( yri + n?/Cz) )

nr nc

in which 7saTE, nc, nr, n, and {yc;, yTi}?zl are all fixed quantities. The only random quantities

in (8) are {A4;}_,.

Therefore, to derive the variance of (8), we now need to derive Eq [A4;], Varq [4;] and Eq [A;A;]
for 7 # j.



To do so, let’s write the sample space of A; as follows:
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and recall that, under complete random assignment, Pr(Z; = 1) = — and Pr(Z; =0) = 1— —
n n
n nr o n—nr . nc
n n n n’
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Derivation of Eq [A;]: Tt is straightforward to see that Eq [A;] = Eq {Zi — —} = Eq [Z]——
n n
nr nr

— — — = 0 or, equivalently,
n n

ncnr nr 1 nr
n n n n
ncnr Nt nc

- n n n n

=0.

Derivation of Varg [4,]: Note that Varg [A;] = Eq [4?] — Eq [4;]° = Eq [4?] — 0. Thus,

Varg [4;] = Eq [Aﬂ
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Derivation of Cov [Ai, Aj} for i # j: Note that {A;},_, all have the same expected value — i.e.,

Eq [Ai] = DT for all i — but are not independent. We therefore will need to derive Cov [Ai, Aj}
n
for i # 7. To do so, first note that

Cov [Ai, Aj] =Eq |:(Az —Eq [Az]) (Aj —Eq [A]])]

= Fa (45— 0) (4; - 0)]

=Eq [4i4;],

which is easier to work with.

The possible values that A;A; could take on are

AiA;

p
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Having derived the sample space of A;A;, we now need to derive the probabilities that correspond
to each of the events in the sample space of A;A;, namely, Pr (ZZ- =1,7; = 1)7 Pr (Zi =0,7; = 1)’
Pr(Z;=1,7;=0) and Pr (Z; = 0,7, = 0).

Remember that Z; and Z; are not independent, which implies that, e.g., Pr (Z,- =1,Z; = 1) +#
Pr(Z;,=1)Pr (Zj = 1). Instead, we will appeal to the definition of joint probability in which



Pr(Zi=22;=2)=Pr(Z; =z)Pr

(ZJ:Z/|Zl:Z)
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We can therefore write the probability distribution function (PDF) of A;A; as

(3) () =56y

pe(a) = 3 () (25 + (%) (25) -

which implies that
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or equivalently, after some algebra,

Step 3

n(n—1)

In this step, we will prove the algebraic equivalence between the expression for S?(7) in Equation

(5) above and

(10)  Sp(r) = | Silyr) - Si(ye) -

i=1
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which will be valuable for our derivation of Varg [7] in Step 4 to follow.

Recall from Equation (5) that

2
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Hence,
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which, after expanding and then simplifying, is equivalent to
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Step 4

Now, to complete the derivation of its variance, note that the variance of the Difference-in-Means

estimator based on the expression of the Difference-in-Means in (8) is:
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which, since Eq [A;] = 0, is equivalent to
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Expanding the expression immediately above yields
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In Step 2 above, we showed that

—nrngc . .
[A A } m when ¢ 7£ i

o [4Ai4;] = Eq [Aﬂ = Varg [A;] = nZZT when i = j,

so it follows that the Difference-in-Means estimator’s variance is

Varg [7 2 Z < yri + CyCi>2 Eq [AZQ }
—_——

nenr
-
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Substituting the expressions we derived for Eq [Aﬂ and Eq [AiAj] and a lot of algebra yields
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Now recall that

which yields
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Finally, at long last, it follows that
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As we showed in Step 3, the third term in the expression immediately above is equal to S?, which
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leaves us with

(12)

ng(yT)

| Siyo)  SAr)

nr

The expression we just derived for Varg [7] is the true variance of the Difference-in-Means estimator.
It is mathematically equivalent to Equation 3.4 in Gerber and Green (2012, 57), which differs from
the expression in Equation (12) above because the variances and covariance of treated and control
potential outcomes in Gerber and Green (2012, Equation 3.4, 57) use a denominator of n as

opposed to n — 1 as in Equations (3), (4) and (5) above. The corrolary below establishes this

equivalence.

Corollary 1. An equivalent expression for the finite sample variance of the Difference-in-Means

ng n

estimator under complete random assignment is

n—1

(13) Varg [7] = L (nCUi(yT) + n19,(y0) + 20n(yc,yT)> ,

where

(14) on(yr) = (%) ’n
(15) on(yc) = <%> i
(16) on(yc, yr) = (%) Z

nr nc
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Proof. Recall the expression for Varg [7] in Equation (11):
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Then, appealing to the definitions o2 (yr), 02(yc) and o, (yc, yr) above, yields

WT_DUZ(?JC) + (= 1)0n(yc, yr)

N o
Varq [7] = (= 1>0n(yT) +

1 noo (yr) n nroy(yc)
n—1 nr no

+ 20n(y07 yT)) )

which completes the proof. n

2 Variance of Difference-in-Means estimator for the Population Aver-
age Treatment Effect (PATE)

2.1 Setup

Thus far, we have considered estimation in only a finite sample. Now consider a superpopulation,
Py, of size N > n > 4 and let the index ¢ € {1,..., N} run over the N units in Py. Let n units
from Py be randomly selected into an experimental sample, S,,, while the remaining N — n units
in Py are unsampled. Of these n sampled units, ny > 2 are randomly assigned to treatment and

n —nr = ng > 2 are randomly assigned to control.

The binary indicator variable R; € {0,1} denotes whether individual unit ¢ is included (R; = 1)
or excluded (R; =0) in the random sample from the superpopulation Py. Let the set II =

-
{’r : vazl r = n} contain all possible values of R = [Rl, . ,RN] :

N
The target of interest is the Population Average Treatment Effect (PATE), mpatg == N 7! > 7.

i=1
Define the Difference-in-Means estimator of mpaTg as

1 & 1 —

Otherwise, the setup for inference of the mparg is identical to the setup in Section 1.1 except that

now, under simple random sampling of n units from a population of size N and complete random

N

assignment with ny treated units out of n sampled units, there are (n

)(H"T) possible assignments,
which reflect the set of (n”T) random assignments for any single realized sample and the (JZ ) different
possible samples that could be realized. Hence, the potential outcomes schedule is now defined
as a mapping from the set of (JZ )( ) possible assignments to an N-dimensional vector of real

n
nr

12



numbers, RY, to reflect the potential outcomes of all N units in Py. The SUTVA assumption for

this potential outcomes schedule is analogous to the SUTVA assumption in Section 1.1 above.

In addition, note that, by the law of total variance, the variance of the Difference-in-Means esti-
mator of the PATE is

(18) Var 7] = Eq [Varg [7]] + Varp [Eq [7]] -

As Equation (18) makes clear, the Difference-in-Means estimator of the PATE in (17) has two
sources of randomness: {R;}Y, and {Z;}Y, which reflect a random sampling process and a
random assignment process. By contrast, the Difference-in-Means estimator of the SATE in (1)
has only one source of randomness, {Z,}f\il For the overall expectation and variance of the
Difference-in-Means estimator of the PATE, I simply write E[-] and Var[-]. However, I write
either Eq [-] and Varg [-] or E [/] and Vary [-] when the expectation and variance are taken over

randomness of either the assignment process or sampling process.

2.2 Derivation of variance of Difference-in-Means estimator for the PATE

Proposition 2. The variance of 7 for Tpare under simple random sampling from the units in Py
and complete random assignment among the units in S, s

(19) Var [7] = NA—[ : (G]QVT(L:T) + UZZVTEgC) B 012\7]\(77')> ’

where

2

1 & 1 &
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Proof. As mentioned above, the law of total variance implies that the variance of the Difference-
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in-Means estimator of the PATE is
Var [7] = Eyp [Varg [7]] 4 Vary [Eq [7]] -

Since 7 is unbiased for 7sarE over 2, we know that Eq [7] = 7saTe. From Proposition 1, we know
that

S? S? S2
Varg 7] = 220r) . Falve) _ Sulr)

Thus, it follows that

Var [#] = Eyy [Varg [7]] + Vary [Eq [7]]

Sulyr) | Sulye) _ Sa(T)
nr nc n

— Eq

+ Varp [T q ATE] .

Syr) | Siye)  Si7)

] and Varn [TSATE]~
nr nc

Therefore, we need to derive Ep [

Elementary theory from survey sampling (Cochran, 1977; Kish, 1965; Lohr, 2010) implies that

N
1 _ N-n 0]2\,(7')
v 132 = (=%
S2 52 52
Now we only need to derive Ey [ n(yr) + w(yo) — n(7)
nr ne n
2 2 2 2 2 2() |
By | SAwr) | Siwe) S| [sn@:p)] Tk [ fwe)| g S5
nr nc n nr nc n

— B [S2ur)] + - Bn [S2wc)] - Bn [$2()].

since, under simple random sampling with a fixed n and complete random assignment, ny, nc and

n are all fixed constants.

Recalling the definitions of S2(yr), S2(yc) and S%(7) in (3), (4) and (5) in the finite sample

context, we can re-write each as

1 N 1 i
S (yr) = <n—1> Z R | yri — - ZRini
=1 =1
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1\ & 1 2
S¥(ye) = <nl> > Ri | yei— - > Riyei
=1 =1

1\ & 1Y i
S¥(7) = <n—1>ZRi Ti_%ZRiTi ;
=1 =1

which make explicit that the randomness of S%(yr), S%(yc) and S%(7) (all of which would be

fixed in a finite sample setting) stems from the N sample inclusion variables {R;}. .

Adapting Cochran (1977, Theorem 2.4), it follows that

B (5% (ur)] = ok ur)
E [S%v(yc): = NN 10'12v(yc)
E[$3(r)] = sk (r).

which implies that

o [Syr) | Skwe)  SR(m]_ N (a?mm % (ye) o%m)
II + - = + - .
nr ne n N —1 nr ne n
52 52 52
With these expressions for Ep [ n(yr) + =N (yc) _ =N <T)] and Vary [TsaTg], it follows that
ny ne n

Var [7] = Enr [VarQ [7 ]] + Varp [EQ [%H

N (a;@(w) | ohlyo) a%m) . (N - n> o (7)

nr nc n
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As we can see from the expression in Equation (19), as N — oo,

N (oX(yr)  oX(ye) oX(7) oX(yr) | o%(yc)
+ — — +
N-1 nr ng N nr ng

Hence, if the superpopulation is infinite, then

2 2
varfr) = Zl0m) | 2ilve)
and, so long as N is very large,
2 2
Var 7] = 2092 OxlvE)
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