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1 Variance of Difference-in-Means estimator for the Sample Average
Treatment Effect (SATE)

1.1 Setup

Let the index i ∈ {1, . . . , n} run over n units in a finite sample, Sn, where n ≥ 4. Of these
n units, nT ≥ 2 are assigned to the treatment condition and nC ≥ 2 are assigned to the control
condition, where nT+nC = n. Although not necessary for the derivation of the Difference-in-Means
estimator’s variance, these assumptions on the sizes of n, nT and nC ensure that the conservative
estimator of the Difference-in-Means estimator’s variance is well defined. Let the binary indicator
variable Zi ∈ {0, 1} denote whether unit i is assigned to treatment (Zi = 1) or control (Zi = 0). The
set Ω =

{
z :
∑n

i=1 zi = nT

}
contains the possible values of Z =

[
Z1, . . . , Zn

]⊤
. Under complete

random assignment, the number of elements in the set Ω is
(

n
nT

)
. By contrast, under n independent

Bernoulli assignments, there would be 2n possible assignment vectors. However, even if nT is not
fixed by design (as in complete random assignment), we can fix nT by conditioning on its observed
value. The randomization distribution conditional on the realized nT yields the same randomization
distribution one would obtain if nT had been fixed ex ante by design. Hence, this general setup
and the proof to follow pertains to both simple and complete random assignment even though
the argument by which one can regard nT as fixed is slightly different under simple and complete
assignment mechanisms.

∗This is a live document that is subject to updating at any time.
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Adopting the terminology of Freedman (2009) and later Gerber and Green (2012), define a potential
outcomes schedule as a vector-valued function, y : Ω 7→ Rn, which maps the set of assignments, Ω,
to an n-dimensional vector of real numbers, Rn. More intuitively, a potential outcomes schedule
is a listing of how each study participant would have responded to any z ∈ Ω that a random
assignment process could produce. The vectors of potential outcomes are the elements in the
image of the potential outcomes schedule, y : Ω 7→ Rn, and the individual potential outcomes for
unit i ∈ {1, . . . , n} are the ith entries of each of the n-dimensional vectors of potential outcomes.

With |Ω| possible assignments, where |Ω| =
(

n
nT

)
under complete random assignment, there are

in principle |Ω| vectors of potential outcomes.1 However, under the Stable Unit Treatment Value
Assumption (SUTVA)2 (Cox, 1958; Rubin, 1980, 1986), let yT i denote the common outcome value
of unit i for all z ∈ Ω with zi = 1. Likewise, let yCi denote the common outcome value of
unit i for all z ∈ Ω with zi = 0. The individual causal effect for unit i on the additive scale is
τi = yT i − yCi. The vectors yC and yT denote the collection of control and treatment potential
outcomes, respectively, for all n units, and τ denotes the collection of individual, additive effects
for all n units. The observed outcome for unit i ∈ {1, . . . , n} is Yi = ZiyT i + (1− Zi) yCi, which is
either yT i or yCi depending on whether the randomly selected z ∈ Ω is with zi = 1 or zi = 0.

The target of interest is the Sample Average Treatment Effect (SATE), τSATE := n−1
n∑

i=1

τi. Define

the Difference-in-Means estimator of τSATE under complete random assignment as

(1) τ̂ :=
1

nT

n∑
i=1

ZiYi −
1

nC

n∑
i=1

(1− Zi)Yi.

For the expectation and variance of this estimator in Equation (1) with respect to the SATE, I
write EΩ [·] and VarΩ [·] to indicate that the expectation and variance pertain to only randomness
of the assignment process.

1.2 Derivation of variance of Difference-in-Means estimator for the SATE

Proposition 1. The variance of τ̂ for the τSATE under complete random assignment is

(2) VarΩ [τ̂ ] =
S2
n(yT )

nT
+

S2
n(yC)

nC
− S2

n(τ )

n
,

1For an arbitrary set W , let |W | denote the cardinality of (i.e., the number of elements in) the set W .
2SUTVA implies that (1) units in the experiment respond to only the treatment condition to which each unit

is individually assigned and (2) the treatment condition is actually the same treatment for all units assigned to
treatment and the control condition is the same for all units assigned to control.
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where

S2
n(yT ) =

(
1

n− 1

) n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

(3)

S2
n(yC) =

(
1

n− 1

) n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

(4)

S2
n(τ ) =

(
1

n− 1

) n∑
i=1

τi −
1

n

n∑
i=1

τi

2

.(5)

Proof. Building on Imbens and Rubin (2015, Chapter 6, Appendix A), we will break the proof
into several steps:

Step 1: We will show that we can write the Difference-in-Means estimator in (1) in terms of not
only Zi, but also the centered treatment variable Ai = Zi −EΩ [Zi]. Doing so will greatly simplify
the subsequent algebra for our derivation of the variance.

Step 2: The potential outcomes, {yT i, yCi}ni=1, are fixed and observed outcomes inherit their
randomness only from the treatment assignment variable. Thus, to derive the variance of the
Difference-in-Means estimator (written now in terms of Ai), we will need to derive EΩ [Ai], VarΩ [Ai]

and Cov
[
Ai, Aj

]
for i 6= j.

Step 3: We will rely on the expressions for S2
n(yT ) and S2

n(yC) above, as well as on the following
algebraic equivalence that we will need to prove:

(6) S2
n(τ ) =

S2
n(yT )− S2

n(yC)− 2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi


 .

Step 4: Once we have completed the three previous steps, we will rely only on the linearity of
expectations, rules of variance and (often very messy) algebra.

Step 1

First, note that we can re-write the estimator as

1

nT

n∑
i=1

ZiYi −
1

nC

n∑
i=1

(1− Zi)Yi =
1

n

n∑
i=1

(
n

nT
ZiyT i −

n

nC
(1− Zi) yCi

)
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Because n = nC+nT , note that 1 =
nC + nT

n
, so instead of (1− Zi) we can write

(
nC + nT

n
− Zi

)
:

1

n

n∑
i=1

n

nT
ZiyT i −

n

nC

(
nC + nT

n
− Zi

)
yCi,

which after a little bit of algebra yields

(7) 1

n

n∑
i=1

n

nT

Zi −
nT

n︸ ︷︷ ︸
=Ai

+
nT

n

 yT i −
n

nC

nC

n
−

Zi −
nT

n︸ ︷︷ ︸
=Ai


 yCi,

where Ai is the centered treatment variable, Ai = Zi − EΩ [Zi], because, under complete random
assignment, EΩ [Zi] =

nT

n
.

Therefore, we can re-write (7) as

1

n

n∑
i=1

n

nT

(
Ai +

nT

n

)
yT i −

n

nC

(
nC

n
−Ai

)
yCi,

which, with a bit more algebra, is equivalent to

1

n

n∑
i=1

yT i − yCi︸ ︷︷ ︸
τSATE

+
1

n

n∑
i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
= τSATE +

1

n

n∑
i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)

Step 2

Thus far, we have shown that the Difference-in-Means estimator in (1) is equivalent to

(8) τSATE +
1

n

n∑
i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
,

in which τSATE, nC , nT , n, and {yCi, yT i}ni=1 are all fixed quantities. The only random quantities
in (8) are {Ai}ni=1.

Therefore, to derive the variance of (8), we now need to derive EΩ [Ai], VarΩ [Ai] and EΩ

[
AiAj

]
for i 6= j.
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To do so, let’s write the sample space of Ai as follows:

(9) Ai = Zi −
nT

n
=


nC

n
if Zi = 1

−nT

n
if Zi = 0

and recall that, under complete random assignment, Pr (Zi = 1) =
nT

n
and Pr (Zi = 0) = 1− nT

n
=

n

n
− nT

n
=

n− nT

n
=

nC

n
.

Derivation of EΩ [Ai]: It is straightforward to see that EΩ [Ai] = EΩ

[
Zi −

nT

n

]
= EΩ [Zi]−

nT

n
=

nT

n
− nT

n
= 0 or, equivalently,

EΩ [Ai] =
nC

n
Pr (Zi = 1)− nT

n
Pr (Zi = 0)

=
nC

n

nT

n
− nT

n

(
1− nT

n

)

=
nC

n

nT

n
− nT

n

nC

n

= 0.

Derivation of VarΩ [Ai]: Note that VarΩ [Ai] = EΩ

[
A2

i

]
− EΩ [Ai]

2 = EΩ

[
A2

i

]
− 0. Thus,

VarΩ [Ai] = EΩ

[
A2

i

]

=

(
nC

n

)2

Pr (Zi = 1) +

(
−nT

n

)2

Pr (Zi = 0)

=
n2
C

n2
Pr (Zi = 1) +

n2
T

n2
Pr (Zi = 0)

=
n2
C

n2

nT

n
+

n2
T

n2

nC

n

=
n2
CnT

n3
+

n2
TnC

n3
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=
n2
CnT + n2

TnC

n3

=
nCnT (nC + nT )

n3

=
nCnT (n)

n3

=
nCnT

n2
.

Derivation of Cov
[
Ai, Aj

]
for i 6= j: Note that {Ai}ni=1 all have the same expected value — i.e.,

EΩ [Ai] =
nT

n
for all i — but are not independent. We therefore will need to derive Cov

[
Ai, Aj

]
for i 6= j. To do so, first note that

Cov
[
Ai, Aj

]
= EΩ

[(
Ai − EΩ [Ai]

) (
Aj − EΩ

[
Aj

])]

= EΩ

[
(Ai − 0)

(
Aj − 0

)]

= EΩ

[
AiAj

]
,

which is easier to work with.

The possible values that AiAj could take on are

AiAj =



(
nC

n

)(
nC

n

)
=

n2
C

n2
if Zi = 1 and Zj = 1

(
−nT

n

)(
nC

n

)
=

−nTnC

n2
if Zi = 0 and Zj = 1 or Zi = 1 and Zj = 0

(
−nT

n

)(
−nT

n

)
=

n2
T

n2
if Zi = 0 and Zj = 0.

Having derived the sample space of AiAj, we now need to derive the probabilities that correspond
to each of the events in the sample space of AiAj, namely, Pr

(
Zi = 1, Zj = 1

)
, Pr

(
Zi = 0, Zj = 1

)
,

Pr
(
Zi = 1, Zj = 0

)
and Pr

(
Zi = 0, Zj = 0

)
.

Remember that Zi and Zj are not independent, which implies that, e.g., Pr
(
Zi = 1, Zj = 1

)
6=

Pr (Zi = 1)Pr
(
Zj = 1

)
. Instead, we will appeal to the definition of joint probability in which
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Pr
(
Zi = z, Zj = z′

)
= Pr (Zi = z) Pr

(
Zj = z′ | Zi = z

)
:

Pr
(
Zi = z, Zj = z′

)
=



(
nT

n

)(
nT − 1

n− 1

)
if Zi = 1 and Zj = 1

(
nT

n

)(
nC

n− 1

)
if Zi = 1 and Zj = 0

(
nC

n

)(
nT

n− 1

)
if Zi = 0 and Zj = 1

(
nC

n

)(
nC

n− 1

)
if Zi = 0 and Zj = 0.

We can therefore write the probability distribution function (PDF) of AiAj as

Pr
(
AiAj

)
=



(
nT

n

)(
nT − 1

n− 1

)
=

nT (nT − 1)

n (n− 1)
if AiAj =

n2
C

n2

(
nT

n

)(
nC

n− 1

)
+

(
nC

n

)(
nT

n− 1

)
=

2 (nTnC)

n (n− 1)
if AiAj =

−nTnC

n2

(
nC

n

)(
nC

n− 1

)
=

nC (nC − 1)

n (n− 1)
if AiAj =

n2
T

n2
,

which implies that

EΩ

[
AiAj

]
=

n2
C

n2

(
nT (nT − 1)

n (n− 1)

)
+

−nTnC

n2

(
2 (nTnC)

n (n− 1)

)
+

n2
T

n2

(
nC (nC − 1)

n (n− 1)

)

or equivalently, after some algebra,
−nTnC

n2 (n− 1)
.

Step 3

In this step, we will prove the algebraic equivalence between the expression for S2
n(τ ) in Equation

(5) above and

(10) S2
n(τ ) =

S2
n(yT )− S2

n(yC)− 2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi


 ,
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which will be valuable for our derivation of VarΩ [τ̂ ] in Step 4 to follow.

Recall from Equation (5) that

S2
n(τ ) =

1

n− 1

n∑
i=1

τi −
1

n

n∑
i=1

τi

2

.

Hence,

S2
n(τ ) =

1

n− 1

n∑
i=1

τi −
1

n

n∑
i=1

τi

2

=
1

n− 1

n∑
i=1

(yT i − yCi)︸ ︷︷ ︸
=τi

− 1

n

n∑
i=1

(yT i − yCi)︸ ︷︷ ︸
=τi


2

=
1

n− 1

n∑
i=1

yT i −
1

n

n∑
i=1

(yT i − yCi)−
1

n

n∑
i=1

yCi

2

,

which, after expanding and then simplifying, is equivalent to

S2
n(τ ) =

1

n− 1

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

︸ ︷︷ ︸
=S2

n(yT )

+
1

n− 1

n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

︸ ︷︷ ︸
=S2

n(yC)

− 2

n− 1

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi



= S2
n(yT ) + S2

n(yC)− 2

n− 1

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi

 .

Step 4

Now, to complete the derivation of its variance, note that the variance of the Difference-in-Means
estimator based on the expression of the Difference-in-Means in (8) is:

VarΩ [τ̂ ] = VarΩ

τSATE +
1

n

n∑
i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
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=
1

n2
VarΩ


n∑

i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
︸ ︷︷ ︸

constant

 ,

which, since EΩ [Ai] = 0, is equivalent to

VarΩ [τ̂ ] =
1

n2

EΩ




n∑
i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
︸ ︷︷ ︸

constant


2
− EΩ


n∑

i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)
︸ ︷︷ ︸

constant


2


=
1

n2
EΩ


 n∑

i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)2
 .

Expanding the expression immediately above yields

VarΩ [τ̂ ] =
1

n2
EΩ


 n∑

i=1

Ai

(
n

nT
yT i +

n

nC
yCi

)2


=
1

n2
EΩ


 n∑

i=1

Ai

(
n

nT
yT i +

n

nC
yCi

) n∑
j=1

Aj

(
n

nT
yTj +

n

nC
yCj

)


=
1

n2
EΩ

 n∑
i=1

n∑
j=1

AiAj

(
n

nT
yT i +

n

nC
yCi

)(
n

nT
yTj +

n

nC
yCj

) .

In Step 2 above, we showed that
EΩ

[
AiAj

]
=

−nTnC

n2 (n− 1)
when i 6= j

EΩ

[
AiAj

]
= EΩ

[
A2

i

]
= VarΩ [Ai] =

nCnT

n2
when i = j,

so it follows that the Difference-in-Means estimator’s variance is

VarΩ [τ̂ ] =
1

n2

n∑
j=1

(
n

nT
yT i +

n

nC
yCi

)2

EΩ

[
A2

i

]
︸ ︷︷ ︸
=
nCnT

n2
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+

n∑
i=1

∑
j ̸=i

(
n

nT
yT i +

n

nC
yCi

)(
n

nT
yTj +

n

nC
yCj

)
EΩ

[
AiAj

]︸ ︷︷ ︸
=

−nTnC

n2 (n− 1)

.

Substituting the expressions we derived for EΩ

[
A2

i

]
and EΩ

[
AiAj

]
and a lot of algebra yields

VarΩ [τ̂ ] =
nC

nnT (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

+
nT

nnC (n− 1)

n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

+
2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi

 .

(11)

Now recall that

S2
n(yT ) =

1

n− 1

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

and

S2
n(yC) =

1

n− 1

n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

,

which yields

VarΩ [τ̂ ] =
nC

nnT
S2
n(yT ) +

nT

nnC
S2
n(yC) +

2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi

 .

Finally, at long last, it follows that

VarΩ [τ̂ ] =
nC

nnT
S2
n(yT ) +

nT

nnC
S2
n(yC) +

2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi



=
S2
n(yT )

nT
+

S2
n(yC)

nC
− S2

n(yT )

n
− S2

n(yC)

n
+

2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi



=
S2
n(yT )

nT
+

S2
n(yC)

nC
− 1

n

S2
n(yT )− S2

n(yC)− 2

(n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi




︸ ︷︷ ︸
=S2

n(τ )

.

As we showed in Step 3, the third term in the expression immediately above is equal to S2
τ , which

10



leaves us with

(12) S2
n(yT )

nT
+

S2
n(yC)

nC
− S2

n(τ )

n
.

The expression we just derived for VarΩ [τ̂ ] is the true variance of the Difference-in-Means estimator.
It is mathematically equivalent to Equation 3.4 in Gerber and Green (2012, 57), which differs from
the expression in Equation (12) above because the variances and covariance of treated and control
potential outcomes in Gerber and Green (2012, Equation 3.4, 57) use a denominator of n as
opposed to n − 1 as in Equations (3), (4) and (5) above. The corrolary below establishes this
equivalence.

Corollary 1. An equivalent expression for the finite sample variance of the Difference-in-Means
estimator under complete random assignment is

(13) VarΩ [τ̂ ] =
1

n− 1

(
nCσ

2
n(yT )

nT

+
nTσ

2
n(yC)

nC

+ 2σn(yC ,yT )

)
,

where

σ2
n(yT ) =

(
1

n

) n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

(14)

σ2
n(yC) =

(
1

n

) n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

(15)

σn(yC ,yT ) =

(
1

n

) n∑
i=1

yCi −
1

n

n∑
i=1

yCi

yT i −
1

n

n∑
i=1

yT i

 .(16)

Proof. Recall the expression for VarΩ [τ̂ ] in Equation (11):

VarΩ [τ̂ ] =
nC

nnT (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

+
nT

nnC (n− 1)

n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

+
2

n (n− 1)

n∑
i=1

yT i −
1

n

n∑
i=1

yT i

yCi −
1

n

n∑
i=1

yCi

 .

11



Then, appealing to the definitions σ2
n(yT ), σ2

n(yC) and σn(yC ,yT ) above, yields

VarΩ [τ̂ ] =
nC

nT (n− 1)
σ2
n(yT ) +

nT

nC (n− 1)
σ2
n(yC) +

2

(n− 1)
σn(yC ,yT )

=
1

n− 1

(
nCσ

2
n(yT )

nT

+
nTσ

2
n(yC)

nC

+ 2σn(yC ,yT )

)
,

which completes the proof.

2 Variance of Difference-in-Means estimator for the Population Aver-
age Treatment Effect (PATE)

2.1 Setup

Thus far, we have considered estimation in only a finite sample. Now consider a superpopulation,
PN , of size N ≥ n ≥ 4 and let the index i ∈ {1, . . . , N} run over the N units in PN . Let n units
from PN be randomly selected into an experimental sample, Sn, while the remaining N − n units
in PN are unsampled. Of these n sampled units, nT ≥ 2 are randomly assigned to treatment and
n− nT = nC ≥ 2 are randomly assigned to control.

The binary indicator variable Ri ∈ {0, 1} denotes whether individual unit i is included (Ri = 1)

or excluded (Ri = 0) in the random sample from the superpopulation PN . Let the set Π ={
r :
∑N

i=1 ri = n
}

contain all possible values of R =
[
R1, . . . , RN

]⊤
.

The target of interest is the Population Average Treatment Effect (PATE), τPATE := N−1
N∑
i=1

τi.

Define the Difference-in-Means estimator of τPATE as

(17) τ̂ :=
1

nT

N∑
i=1

RiZiYi −
1

nC

N∑
i=1

Ri (1− Zi)Yi.

Otherwise, the setup for inference of the τPATE is identical to the setup in Section 1.1 except that
now, under simple random sampling of n units from a population of size N and complete random
assignment with nT treated units out of n sampled units, there are

(
N
n

)(
n
nT

)
possible assignments,

which reflect the set of
(

n
nT

)
random assignments for any single realized sample and the

(
N
n

)
different

possible samples that could be realized. Hence, the potential outcomes schedule is now defined
as a mapping from the set of

(
N
n

)(
n
nT

)
possible assignments to an N -dimensional vector of real

12



numbers, RN , to reflect the potential outcomes of all N units in PN . The SUTVA assumption for
this potential outcomes schedule is analogous to the SUTVA assumption in Section 1.1 above.

In addition, note that, by the law of total variance, the variance of the Difference-in-Means esti-
mator of the PATE is

(18) Var [τ̂ ] = EΠ

[
VarΩ [τ̂ ]

]
+VarΠ

[
EΩ [τ̂ ]

]
.

As Equation (18) makes clear, the Difference-in-Means estimator of the PATE in (17) has two
sources of randomness: {Ri}Ni=1 and {Zi}Ni=1, which reflect a random sampling process and a
random assignment process. By contrast, the Difference-in-Means estimator of the SATE in (1)
has only one source of randomness, {Zi}Ni=1. For the overall expectation and variance of the
Difference-in-Means estimator of the PATE, I simply write E [·] and Var [·]. However, I write
either EΩ [·] and VarΩ [·] or EΠ [·] and VarΠ [·] when the expectation and variance are taken over
randomness of either the assignment process or sampling process.

2.2 Derivation of variance of Difference-in-Means estimator for the PATE

Proposition 2. The variance of τ̂ for τPATE under simple random sampling from the units in PN

and complete random assignment among the units in Sn is

(19) Var [τ̂ ] =
N

N − 1

(
σ2
N (yT )

nT
+

σ2
N (yC)

nC
−

σ2
N (τ )

N

)
,

where

σ2
N (yT ) =

(
1

N

) N∑
i=1

yT i −
1

N

N∑
i=1

yT i

2

σ2
N (yC) =

(
1

N

) N∑
i=1

yCi −
1

N

N∑
i=1

yCi

2

σ2
N (τ ) =

1

N

N∑
i=1

yT i − yCi −
1

N

N∑
i=1

τi

2

.

Proof. As mentioned above, the law of total variance implies that the variance of the Difference-

13



in-Means estimator of the PATE is

Var [τ̂ ] = EΠ

[
VarΩ [τ̂ ]

]
+VarΠ

[
EΩ [τ̂ ]

]
.

Since τ̂ is unbiased for τSATE over Ω, we know that EΩ [τ̂ ] = τSATE. From Proposition 1, we know
that

VarΩ [τ̂ ] =
S2
n(yT )

nT

+
S2
n(yC)

nC

− S2
n(τ )

n
.

Thus, it follows that

Var [τ̂ ] = EΠ

[
VarΩ [τ̂ ]

]
+VarΠ

[
EΩ [τ̂ ]

]
= EΠ

[
S2
n(yT )

nT
+

S2
n(yC)

nC
− S2

n(τ )

n

]
+VarΠ [τSATE] .

Therefore, we need to derive EΠ

[
S2
n(yT )

nT

+
S2
n(yC)

nC

− S2
n(τ )

n

]
and VarΠ [τSATE].

Elementary theory from survey sampling (Cochran, 1977; Kish, 1965; Lohr, 2010) implies that

VarΠ

 1

n

N∑
i=1

Riτi

 =
N − n

(N − 1)

σ2
N (τ )

n
.

Now we only need to derive EΠ

[
S2
n(yT )

nT

+
S2
n(yC)

nC

− S2
n(τ )

n

]
:

EΠ

[
S2
n(yT )

nT
+

S2
n(yC)

nC
− S2

n(τ )

n

]
= EΠ

[
S2
n(yT )

nT

]
+ EΠ

[
S2
n(yC)

nC

]
− EΠ

[
S2
n(τ )

n

]

=
1

nT
EΠ

[
S2
n(yT )

]
+

1

nC
EΠ

[
S2
n(yC)

]
− 1

n
EΠ

[
S2
n(τ )

]
,

since, under simple random sampling with a fixed n and complete random assignment, nT , nC and
n are all fixed constants.

Recalling the definitions of S2
n(yT ), S2

n(yC) and S2
n(τ ) in (3), (4) and (5) in the finite sample

context, we can re-write each as

S2
N (yT ) =

(
1

n− 1

) N∑
i=1

Ri

yT i −
1

n

N∑
i=1

RiyT i

2
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S2
N (yC) =

(
1

n− 1

) N∑
i=1

Ri

yCi −
1

n

N∑
i=1

RiyCi

2

S2
N (τ ) =

(
1

n− 1

) N∑
i=1

Ri

τi −
1

n

N∑
i=1

Riτi

2

,

which make explicit that the randomness of S2
N(yT ), S2

N(yC) and S2
N(τ ) (all of which would be

fixed in a finite sample setting) stems from the N sample inclusion variables {Ri}Ni=1.

Adapting Cochran (1977, Theorem 2.4), it follows that

E
[
S2
N (yT )

]
=

N

N − 1
σ2
N (yT )

E
[
S2
N (yC)

]
=

N

N − 1
σ2
N (yC)

E
[
S2
N (τ )

]
=

N

N − 1
σ2
N (τ ),

which implies that

EΠ

[
S2
N (yT )

nT
+

S2
N (yC)

nC
−

S2
N (τ )

n

]
=

N

N − 1

(
σ2
N (yT )

nT
+

σ2
N (yC)

nC
−

σ2
N (τ )

n

)
.

With these expressions for EΠ

[
S2
N(yT )

nT

+
S2
N(yC)

nC

− S2
N(τ )

n

]
and VarΠ [τSATE], it follows that

Var [τ̂ ] = EΠ

[
VarΩ [τ̂ ]

]
+VarΠ

[
EΩ [τ̂ ]

]

=
N

N − 1

(
σ2
N (yT )

nT
+

σ2
N (yC)

nC
−

σ2
N (τ )

n

)
+

(
N − n

N − 1

)
σ2
N (τ )

n

=
1

N − 1

(
Nσ2

N (yT )

nT
+

Nσ2
N (yC)

nC
−

Nσ2
N (τ )

n
+

(N − n)σ2
N (τ )

n

)

=
1

N − 1

(
Nσ2

N (yT )

nT
+

Nσ2
N (yC)

nC
−

Nσ2
N (τ )

n
+

σ2
N (τ )N − σ2

N (τ )n

n

)
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=
1

N − 1

(
Nσ2

N (yT )

nT
+

Nσ2
N (yC)

nC
− σ2

N (τ )

)

=
1

N − 1

(
Nσ2

N (yT )

nT
+

Nσ2
N (yC)

nC
− N

N
σ2
N (τ )

)

=
N

N − 1

(
σ2
N (yT )

nT
+

σ2
N (yC)

nC
−

σ2
N (τ )

N

)
.

As we can see from the expression in Equation (19), as N → ∞,

N

N − 1

(
σ2
N (yT )

nT
+

σ2
N (yC)

nC
−

σ2
N (τ )

N

)
→

σ2
N (yT )

nT
+

σ2
N (yC)

nC
.

Hence, if the superpopulation is infinite, then

Var [τ̂ ] =
σ2
N (yT )

nT
+

σ2
N (yC)

nC

and, so long as N is very large,

Var [τ̂ ] ≈
σ2
N (yT )

nT
+

σ2
N (yC)

nC
.
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