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1 Estimation of Sample Average Treatment Effect (SATE)

1.1 Setup

Let the index i ∈ {1, . . . , n} run over n units in a finite sample, Sn, where n ≥ 4. Of these
n units, nT ≥ 2 are assigned to the treatment condition and nC ≥ 2 are assigned to the control
condition, where nT+nC = n. Although not necessary for the derivation of the Difference-in-Means
estimator’s variance, these assumptions on the sizes of n, nT and nC ensure that the conservative
estimator of the Difference-in-Means estimator’s variance is well defined. Let the binary indicator
variable Zi ∈ {0, 1} denote whether unit i is assigned to treatment (Zi = 1) or control (Zi = 0). The
set Ω =

{
z :
∑n

i=1 zi = nT

}
contains the possible values of Z =

[
Z1, . . . , Zn

]⊤
. Under complete

random assignment, the number of elements in the set Ω is
(

n
nT

)
. By contrast, under n independent

Bernoulli assignments, there would be 2n possible assignment vectors. However, even if nT is not
fixed by design (as in complete random assignment), we can fix nT by conditioning on its observed
value. The randomization distribution conditional on the realized nT yields the same randomization
distribution one would obtain if nT had been fixed ex ante by design. Hence, this general setup
and the proof to follow pertains to both simple and complete random assignment even though
the argument by which one can regard nT as fixed is slightly different under simple and complete
assignment mechanisms.

∗This is a live document that is subject to updating at any time.
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Adopting the terminology of Freedman (2009) and later Gerber and Green (2012), define a potential
outcomes schedule as a vector-valued function, y : Ω 7→ Rn, which maps the set of assignments, Ω,
to an n-dimensional vector of real numbers, Rn. More intuitively, a potential outcomes schedule
is a listing of how each study participant would have responded to any z ∈ Ω that a random
assignment process could produce. The vectors of potential outcomes are the elements in the
image of the potential outcomes schedule, y : Ω 7→ Rn, and the individual potential outcomes for
unit i ∈ {1, . . . , n} are the ith entries of each of the n-dimensional vectors of potential outcomes.

With |Ω| possible assignments, where |Ω| =
(

n
nT

)
under complete random assignment, there are

in principle |Ω| vectors of potential outcomes.1 However, under the Stable Unit Treatment Value
Assumption (SUTVA)2 (Cox, 1958; Rubin, 1980, 1986), let yT i denote the common outcome value
of unit i for all z ∈ Ω with zi = 1. Likewise, let yCi denote the common outcome value of
unit i for all z ∈ Ω with zi = 0. The individual causal effect for unit i on the additive scale is
τi = yT i − yCi. The vectors yC and yT denote the collection of control and treatment potential
outcomes, respectively, for all n units, and τ denotes the collection of individual, additive effects
for all n units. The observed outcome for unit i ∈ {1, . . . , n} is Yi = ZiyT i + (1− Zi) yCi, which is
either yT i or yCi depending on whether the randomly selected z ∈ Ω is with zi = 1 or zi = 0.

The target of interest is the Sample Average Treatment Effect (SATE), τSATE := n−1
n∑

i=1

τi. Define

the Difference-in-Means estimator of τSATE as

(1) τ̂ :=

n∑
i=1

ZiYi

n∑
i=1

Zi

−

n∑
i=1

(1− Zi)Yi

n∑
i=1

(1− Zi)
.

For the expectation of this estimator in Equation (1) with respect to the SATE, I write EΩ [·] to
indicate that the expectation pertains to only randomness of the assignment process.

1.2 Estimation under Complete Random Assignment

Lemma 1. Under complete, uniform random assignment in which nT out of n total units are
assigned to treatment, EΩ [Zi] =

nT

n
for all i ∈ {1, . . . , n} units.

Proof. We will complete this proof in two steps: We will show that (1) the proportion of as-
1For an arbitrary set W , let |W | denote the cardinality of (i.e., the number of elements in) the set W .
2SUTVA implies that (1) units in the experiment respond to only the treatment condition to which each unit

is individually assigned and (2) the treatment condition is actually the same treatment for all units assigned to
treatment and the control condition is the same for all units assigned to control.
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signments in which unit i is in the treatment condition is nT

n
and (2) under uniform, random

assignment, the probability that Zi = 1 is equal to this proportion nT

n
.

Step 1: First note that the number of ways to choose a subset of nT treated units from a fixed
population of n units is as follows:

(2)
(

n

nT

)
=

n!

(n− nT )!nT !
=

n!

nC !nT !
,

where nC = n− nT is the number of units assigned to the control condition.

Given that an arbitrary unit i is in the treatment condition and only nT total units can be in the
treatment condition, there are

(
n−1
nT−1

)
ways in which nT − 1 other units could be in the treatment

condition. Hence, the number of assignments in which unit i is treated and nT − 1 other units are
treated is:

(3)
(

n− 1

nT − 1

)
=

(n− 1)!(
(n− 1)− (nT − 1)

)
! (nT − 1)!

To get the proportion of assignments in which unit i is treated, we need to divide (3) by (2):

(4)
(

n−1
nT−1

)(
n
nT

) =

(
(n− 1)!(

(n− 1)− (nT − 1)
)
! (nT − 1)!

)
(

n!

nC !nT !

)

Now notice that:

(n− 1)− (nT − 1) = n− 1− nT + 1

= n− nT

= nC

We can therefore substitute nC for (n− 1)− (nT − 1) in (4), which gives us:
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(5)

(
(n− 1)!

nC ! (nT − 1)!

)
(

n!

nC !nT !

)

Now we can simply manipulate (5) and cancel terms until we are left with nT

n
:

=

(
(n− 1)!

nC ! (nT − 1)!

)(
nC !nT !

n!

)

=

(
(n− 1) (n− 2) . . . 1

nC (nC − 1) . . . 1 (nT − 1) . . . 1

)(
nC (nC − 1) . . . 1nT (nT − 1) . . . 1

n (n− 1) . . . 1

)

=
(n− 1) (n− 2) . . . 2nC (nC − 1) . . . 2nT (nT − 1) . . . 2

nC (nC − 1) . . . 2(nT − 1) . . . 2n(n− 1) . . . 2

All of the respective matching colors in the numerator and denominator cancel, which leaves us
with nT

n
. Therefore, exactly nT

n
out of all assignment assignments will be those in which unit i is

in the treatment condition.

Setp 2: The total probability of all assignments in which i is treated is simply the sum of the
probabilities of those assignments in which unit i is in the treatment condition. Under uniform
random assignment, the probability of each assignment permutation is 1

|Ω|
. Thus, the probability

that unit i is treated is as follows:(
1

|Ω|

)(
nT

n

)
|Ω| =

(
1

|Ω|

)
nT |Ω|
n

=
nT |Ω|
|Ω|n

=
nT

n

Since Pr (Zi = 1) =
nT

n
for all i ∈ {1, . . . , n} units, it follows that the expected value of Zi ∈ {0, 1}

is EΩ [Zi] = 1

(
nT

n

)
+ 0

(
1− nT

n

)
=

nT

n
.
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Proposition 1. Under complete, uniform random assignment, EΩ [τ̂ ] = τ̄SATE.

Proof. First, the linearity of expectations implies that

EΩ [τ̂ ] = EΩ


n∑

i=1

ZiYi

n∑
i=1

Zi

−

n∑
i=1

(1− Zi)Yi

n∑
i=1

(1− Zi)



= EΩ


n∑

i=1

ZiYi

n∑
i=1

Zi

− EΩ


n∑

i=1

(1− Zi)Yi

n∑
i=1

(1− Zi)


and, since the number of treated and control units are fixed at nT and nC under complete random
assignment,

EΩ [τ̂ ] =
1

nT

EΩ

 n∑
i=1

ZiYi

− 1

nC

EΩ

 n∑
i=1

(1− Zi)Yi



Since, under SUTVA, the observed outcomes for treated units is equal to those units’ treatment
potential outcomes, we can substitute ZiyT i for ZiYi. Analogously, we can substitute (1− Zi) yCi

for (1− Zi)Yi. That is, with Yi = ZiyT i + (1− Zi)yCi, it follows that

ZiYi = Zi

(
ZiyT i + (1− Zi)yCi

)
= ZiyT i and

(1− Zi)Yi = (1− Zi)
(
ZiyT i + (1− Zi)yCi

)
= (1− Zi)yCi,

which leaves us with

EΩ [τ̂ ] =
1

nT

EΩ

 n∑
i=1

ZiyT i

− 1

nC

EΩ

 n∑
i=1

(1− Zi) yCi


=

(
1

nT

)
EΩ [Z1yT1 + · · ·+ ZnyTn]−

(
1

nC

)
EΩ

[
(1− Z1) yC1 + · · ·+ (1− Zn) yCn

]
=

(
1

nT

)
EΩ [Z1yT1] + · · ·+ EΩ [ZnyTn]−

(
1

nC

)
EΩ

[
(1− Z1) yC1

]
+ · · ·+ EΩ

[
(1− Zn) yCn

]
=

(
1

nT

)
yT1EΩ [Z1] + · · ·+ yTnEΩ [Zn]−

(
1

nC

)
yC1EΩ

[
(1− Z1)

]
+ · · ·+ yCnEΩ

[
(1− Zn)

]

By Lemma 1, EΩ [Zi] =

(
nT

n

)
for all i ∈ {1, . . . , n}, which implies that EΩ

[
(1− Zi)

]
= 1 −

5



(
nT

n

)
=

(
nC

n

)
for all i ∈ {1, . . . , n}. Hence, we can substitute

(
nT

n

)
for EΩ [Zi] and

(
nC

n

)
for

EΩ [1− Zi], respectively, which then yields

=

(
1

nT

)(
nT

n

)
(yT1 + · · ·+ yTn)−

(
1

nC

)(
nC

n

)
(yC1 + · · ·+ yCn)

=

(
1

n

)
(yT1 + · · ·+ yTn)−

(
1

n

)
(yC1 + · · ·+ yCn)

=
(yT1 + · · ·+ yTn)

n
− (yC1 + · · ·+ yCn)

n

= ȳT − ȳC

= τ̄ .

1.3 Estimation under Simple Random Assignment

Under simple random assignment, let the number of experimental units, n, be a fixed quantity,
but let the number of treatment and control units be random variables with support given by
N1 ∈ {1, . . . , n− 1} and N0 ∈ n − N1. Note that neither N1 nor N0 can take on the value of
0. In this setting, the set of possible assignments is Ω =

{
z : 0 <

∑n
i=1 zi < n

}
, which contains

2n − 2 elements. In the proof to follow, note that whenever taking an expectation conditional on
some number of treated units, nT , the expectation is over Ω =

{
z :
∑n

i=1 zi = nT

}
. When not

conditioning on a value of nT , the expectation is over Ω =
{
z : 0 <

∑n
i=1 zi < n

}
. For simplicity,

I do not change the notation for these two sets of assignments under complete and simple random
assignment.

In the proof that follows, we will draw upon the Law of Iterated Expectations, which states in
general that, for two random variables X and Y , E [X] = EY

[
EX

[
X | Y = y

]]
, where EX refers

to the expectation over X and EY refers to the expectation over Y .

Proposition 2. Under simple, uniform random assignment EΩ [τ̂ ] = τ̄SATE.

Proof. By the law of iterated expectations, the expected value of the Difference-in-Means estimator,̂̄τ , can be decomposed as

(6) EΩ

[̂̄τ] = EΩ

[̂̄τ |N1 = 1
]
Pr (N1 = 1) + · · ·+ EΩ

[̂̄τ |N1 = n− 1
]
Pr (N1 = n− 1) .

By Proposition 1 above, the expected value of the estimator conditional on any realized number
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of treated units is equal to τ̄ . Hence, it follows that Equation (6) can be rewritten as:

EΩ

[̂̄τ] = τ̄ Pr (N1 = 1) + · · ·+ τ̄ Pr (N1 = n− 1) ,

which we can rewrite as

EΩ

[̂̄τ] = τ̄
[
Pr (N1 = 1) + · · ·+ Pr (N1 = n− 1)

]
.

Finally, note that by the second and third axioms of probability,
[
Pr (N1 = 1)+· · ·+Pr (N1 = n− 1)

]
=

1. Hence, it follows that

EΩ

[̂̄τ] = τ̄
[
1
]

EΩ

[̂̄τ] = τ̄ ,

which proves the proposition.
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