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1 Estimation of Sample Average Treatment Effect (SATE)

1.1 Setup

Let the index ¢ € {1,...,n} run over n units in a finite sample, S,, where n > 4. Of these
n units, ny > 2 are assigned to the treatment condition and no > 2 are assigned to the control
condition, where nr+n¢c = n. Although not necessary for the derivation of the Difference-in-Means
estimator’s variance, these assumptions on the sizes of n, ny and n¢ ensure that the conservative
estimator of the Difference-in-Means estimator’s variance is well defined. Let the binary indicator
variable Z; € {0, 1} denote whether unit 7 is assigned to treatment (Z; = 1) or control (Z; = 0). The
set ) = {z DY %= nT} contains the possible values of Z = [Zl, - Zn} T. Under complete
random assignment, the number of elements in the set €2 is (n"T) By contrast, under n independent
Bernoulli assignments, there would be 2" possible assignment vectors. However, even if ny is not
fixed by design (as in complete random assignment), we can fix ny by conditioning on its observed
value. The randomization distribution conditional on the realized ny yields the same randomization
distribution one would obtain if ny had been fixed ex ante by design. Hence, this general setup
and the proof to follow pertains to both simple and complete random assignment even though
the argument by which one can regard nr as fixed is slightly different under simple and complete

assignment mechanisms.
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Adopting the terminology of Freedman (2009) and later Gerber and Green (2012), define a potential
outcomes schedule as a vector-valued function, y : 0 — R", which maps the set of assignments, €2,
to an n-dimensional vector of real numbers, R". More intuitively, a potential outcomes schedule
is a listing of how each study participant would have responded to any z € () that a random
assignment process could produce. The vectors of potential outcomes are the elements in the
image of the potential outcomes schedule, y : 2 — R" and the individual potential outcomes for

unit ¢ € {1,...,n} are the ith entries of each of the n-dimensional vectors of potential outcomes.

n
nr

in principle |Q| vectors of potential outcomes.! However, under the Stable Unit Treatment Value
Assumption (SUTVA)? (Cox, 1958; Rubin, 1980, 1986), let yr; denote the common outcome value

of unit ¢ for all z € Q with z; = 1. Likewise, let y¢; denote the common outcome value of

With Q| possible assignments, where [2] = (") under complete random assignment, there are

unit ¢ for all z € ) with z; = 0. The individual causal effect for unit 7 on the additive scale is
T: = y1ri — Yoi- The vectors yo and yr denote the collection of control and treatment potential
outcomes, respectively, for all n units, and 7 denotes the collection of individual, additive effects
for all n units. The observed outcome for unit i € {1,...,n} is Y; = Zyyr; + (1 — Z;) yci, which is

either yr; or yo; depending on whether the randomly selected z € ) is with z; = 1 or z; = 0.

The target of interest is the Sample Average Treatment Effect (SATE), tsate == n"1 > 7. Define
i=1

the Difference-in-Means estimator of 7qaTg as

Y ZY; (1-2)Y,
(1) F== = .
; Z; ; (1-2)

For the expectation of this estimator in Equation (1) with respect to the SATE, I write Eg [-] to

indicate that the expectation pertains to only randomness of the assignment process.

1.2 Estimation under Complete Random Assignment

Lemma 1. Under complete, uniform random assignment in which ny out of n total units are

assigned to treatment, Eq [Z;] = nr forallie{1,... ,n} units.
n

Proof. We will complete this proof in two steps: We will show that (1) the proportion of as-

!For an arbitrary set W, let |W| denote the cardinality of (i.e., the number of elements in) the set W.

2SUTVA implies that (1) units in the experiment respond to only the treatment condition to which each unit
is individually assigned and (2) the treatment condition is actually the same treatment for all units assigned to
treatment and the control condition is the same for all units assigned to control.



signments in which unit ¢ is in the treatment condition is — and (2) under uniform, random
n

n
assignment, the probability that Z; = 1 is equal to this proportion -,
n

Step 1: First note that the number of ways to choose a subset of ny treated units from a fixed

population of n units is as follows:

n n! n!
2) - gl nalng!’
nr (n — nT).nT. no:nr:

where nc = n — np is the number of units assigned to the control condition.

Given that an arbitrary unit ¢ is in the treatment condition and only ny total units can be in the
treatment condition, there are (n”T*_ll) ways in which ny — 1 other units could be in the treatment
condition. Hence, the number of assignments in which unit ¢ is treated and ny — 1 other units are

treated is:

n—1Y (n—1)!
) <nT—1) “ =D (o D) (nr — 1]

To get the proportion of assignments in which unit ¢ is treated, we need to divide (3) by (2):

Now notice that:

m—1)—(nr—1)=n—-1—-nr+1
=N —Nnr

We can therefore substitute ng for (n — 1) — (np — 1) in (4), which gives us:



( (n—1)! )

n!
nclng!

n
Now we can simply manipulate (5) and cancel terms until we are left with L.

B (n—1)! nelng!
B (ncl (nT—l)!) ( n! )
_ (n—1>(n—2)1 nc(nc—l)...lnT(nT—l)...l
ne(nec—1)...1(np—1)...1 nn—1)...1
_ (n—1)(n—2)...2nc(nc —1)...2nr
ne(ne—1)...2 n(n—1)...2

All of the respective matching colors in the numerator and denominator cancel, which leaves us
n n
with —. Therefore, exactly ~L out of all assignment assignments will be those in which unit ¢ is

n
in the treatment condition.

Setp 2: The total probability of all assignments in which ¢ is treated is simply the sum of the
probabilities of those assignments in which unit ¢ is in the treatment condition. Under uniform

1
random assignment, the probability of each assignment permutation is m Thus, the probability

that unit 7 is treated is as follows:

() () () =

nr |9
Q| n

Since Pr(Z; =1) = "7 for alli € {1,...,n} units, it follows that the expected value of Z; € {0, 1}
n

)
isEQ[Zi]zl(%)+O(1—%):%. O



Proposition 1. Under complete, uniform random assignment, Eq [T] = Tsars.

Proof. First, the linearity of expectations implies that

S ZY, S (1-Z)Y
B[] =Eo | S— -
i; Z; Z; (1-2;)
WA S (1-Z)Y,
=Eq | = —Eq | 55—
1—231 Z; 2—231 (1-2;)

and, since the number of treated and control units are fixed at ny and ne under complete random

assignment,

n

L1 - 1
Eqlf] = —Ea | }_ZYi| —-—Ea |3 (1-Z)Y,
i=1

n
T i=1

Since, under SUTVA, the observed outcomes for treated units is equal to those units’ treatment
potential outcomes, we can substitute Z;yp; for Z;Y;. Analogously, we can substitute (1 — Z;) yo;
for (1 — Z;)Y;. That is, with Y; = Zyr; + (1 — Z;)ycs, it follows that

ZiY; = Z; (Zini + (1 - Zi)?/Ci) = Ziyri and
(1= 2)Y; = (1= Z) (Ziyri + (1 = Zi)yes) = (1 — Zi)ye,

which leaves us with

Eq [7] = %EQ ZZini - %EQ Z(l — Zi) yci
= (%) Eq [Ziyry + - - 4 Znyrn] — (%) Eq [(1 —Z)yer+ -+ (1—2Zy) ycn}
— () Balzim] 4+ Ba Zum) - (o ) Ba [(1= Z0yer) 4+ + Ba (1 - Z)yes]
= (%) yrEq [Z1] + - + yrnEa [Z,] — (%) yerBo [(1 = Z0)] + -+ + yenEo [(1 — Z,)]

By Lemma 1, Eq[Z;] = <n—T> for all i € {1,...,n}, which implies that Eq [(1— Z;)] = 1 —
n



(n_T) _ <n_c) for all i € {1,...,n}. Hence, we can substitute (n—T) for Eq [Z;] and <n_c> for
n

n n n
Eq [1 — Z;], respectively, which then yields

() o (2) (oo

1 1
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n n
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n n

=Yr—Y

=7

1.3 Estimation under Simple Random Assignment

Under simple random assignment, let the number of experimental units, n, be a fixed quantity,
but let the number of treatment and control units be random variables with support given by
Ny € {l,...,n—1} and Ny € n — N;. Note that neither N; nor Ny can take on the value of
0. In this setting, the set of possible assignments is {2 = {z 0< > m< n}, which contains
2™ — 2 elements. In the proof to follow, note that whenever taking an expectation conditional on
some number of treated units, ny, the expectation is over 2 = {z LY %= nT}. When not
conditioning on a value of nr, the expectation is over ) = {z 0<> s < n} For simplicity,
I do not change the notation for these two sets of assignments under complete and simple random

assignment.

In the proof that follows, we will draw upon the Law of Iterated Expectations, which states in
general that, for two random variables X and Y, E[X] = Ey [E x[X]Y = yH, where Ex refers

to the expectation over X and Ey refers to the expectation over Y.

Proposition 2. Under simple, uniform random assignment Eq [T] = Tsarg.

Proof. By the law of iterated expectations, the expected value of the Difference-in-Means estimator,

7, can be decomposed as

6)  Eq [ﬂ — Eq [?|N1:1}Pr(N1:1)+---—|—EQ ?|N1:n—1]Pr(N1:n—1).

By Proposition 1 above, the expected value of the estimator conditional on any realized number



of treated units is equal to 7. Hence, it follows that Equation (6) can be rewritten as:

~

Eq H —FPr(Ny=1) 4+ +7Pr(Ny =n—1),

which we can rewrite as

~

Eq H :f[Pr(N1:1)+~~~+Pr(N1:n—l)].

Finally, note that by the second and third axioms of probability, [Pr (Ny = 1)+ +Pr(Ny=n—1) ] =
1. Hence, it follows that

which proves the proposition. Il
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