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Abstract

Matching, a canonical design for observational studies, takes many forms that
rest on distinct — yet often implicit — statistical principles. We construct a
matching pipeline for practitioners that makes these principles explicit an integrates
stages often treated separately within a coherent design-based framework. The
pipeline begins from the conceptual ideal of a randomized experiment, traces how
observational studies depart from it, and then employs matching to approximate
that ideal. The next stage is inference under the as-if randomization assumption that
matched sets are equivalent to a collection of randomized experiments within blocks,
where each block has a fixed number of treated units equal to the number observed
in that set. Under this assumption, we consider inference on all individual effects
in the "sharp" framework and on the average effect in the "weak" framework. The
final stage is a sensitivity analysis to assess, under either framework, how inferences
change under departures from as-if randomization. Each step includes extensively
commented R code that equips practitioners to implement both established and newly
developed procedures, including several not yet available in existing R packages. We
illustrate the full workflow through an application examining the effect of United
Nations peacekeeping interventions on the duration of post-conflict peace.
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1. Design-Based Foundations of the Matching Pipeline

1.1 The Randomized Experimental Ideal

Imagine a randomized experiment in which a researcher flips a fair coin independently

for each individual in the study. Heads means assignment of the individual to control,

while tails means assignment to treatment. After assignments to treatment and control,

the researcher administers the conditions and then compares outcomes between treated

and control groups.

Why is this procedure effective? Randomization is a fair lottery: Every individual

has the same chance of being assigned to treatment. This means that individuals

who would respond more strongly to treatment are no more likely to receive it than

those who would respond less strongly, and the same is true for control. Because

each individual’s assignment is determined by the same coin toss (with the same

probability of landing heads or tails), randomization leaves only two possibilities: (1)

the difference in outcomes between treatment and control groups reflects the true

causal effect, or (2) chance variation produced a misleading difference. Although

misleading differences can occur by chance, randomization is valuable because it

enables us to use statistical tools to quantify and limit the chance of such errors. As a

result, randomized experiments yield especially credible causal conclusions.

Randomization is useful not only as a procedure, but also as an idea. It helps us

understand when statistical tools will (and will not) yield credible conclusions, even

when we have not directly randomized. In an observational study, the researcher does

not control who receives the treatment and instead observes units after they have been

assigned to treatment and control groups. In such settings, the idea of randomization

can guide how we design studies so that they yield more credible causal conclusions.
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1.2 Bridging Randomized Experiments and Observational Studies

A useful framework for connecting randomized experiments to observational studies is

what Rubin (1977) calls “assignment to treatment group on the basis of a covariate,”

where a covariate is a pre-treatment characteristic of a study’s units. To make this idea

concrete, suppose treatment is assigned by independent coin tosses for each individual

in which the probability of heads or tails depends on that individual’s value of a single

covariate. Consequently, all individuals with the same covariate value share the same

chance of ending up in treatment, while those with a different covariate value share a

different chance.

In this setting, we can envision forming groups (i.e., matched sets) so that all individuals

within a group share the same covariate value. Each group then functions as a miniature

randomized experiment in that random chance alone explains why some individuals

in the group ended up in treatment while others did not. Importantly, to justify

this interpretation, we do not need to know each individual’s actual probability of

treatment. It is enough to know that the probability of treatment depends only on

the covariate, which ensures that all individuals with the same covariate value have

the same chance of treatment.

1.3 Matching to Approximate the Randomized Experimental Ideal

The same intuition applies to matching when the probability of treatment depends

on many baseline covariates. The underlying idea is that individuals with similar

covariates have similar treatment assignment probabilities. Thus, in an effort to

recreate a randomized experiment, we use the covariates we observe and believe

determine treatment chances in order to divide individuals into groups, with each

group containing both treated and control subjects who are homogeneous in those
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covariates. We are, in effect, constructing a new single variable: group (i.e., matched

set) membership. We can think of this membership variable as the single covariate in

the framework of “assignment to treatment group on the basis of a covariate” (Rubin,

1977) discussed above. Although we still do not know each individual’s treatment

probability, the hope is that all individuals within a group share the same probability,

whatever it may be.

We call the condition in which all individuals within matched sets share the same

treatment probability as-if randomization, although other terms such as selection

on observables and strong ignorability are common. The term as-if randomization is

especially fitting: When all units within each matched set share the same individual

treatment probability, all assignments within each set — holding fixed the set’s

observed number of treated units — are equally likely. In this case, the probability

distribution over these assignments is equivalent to that induced by a randomized

experiment in which a researcher first forms blocks corresponding to the matched sets

and then randomly assigns a fixed number of units to treatment within each block.

Thus, when as-if randomization holds, we can apply the same statistical tools that we

would use under such a block-randomized design to draw credible causal inferences

from the observational study.

1.4 Why Sensitivity Analysis Matters

Unlike a randomized experiment, even the best matched designs rely on the strong

assumption of as-if randomization. When this assumption holds, we can draw causal

conclusions by analyzing the data as if they came from a randomized experiment.

However, if the assumption is wrong, our causal claims are no longer guaranteed to be

credible.
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How can this assumption fail? First, individuals within a group may be similar on

observed covariates, but not similar enough to have the same treatment probabilities.

Second, treatment assignment may depend on covariates we did not measure. If so,

even if individuals within groups appear comparable on observed covariates, those

individuals may still differ on hidden covariates that determine the probability of

treatment.

For these reasons, it is important to assess the sensitivity of our causal conclusions

to departures from as-if randomization. Conclusions are especially convincing when

they hold not only under this assumption, but also under moderate violations of it.

Conclusions that collapse under only mild departures are much less convincing.

1.5 Roadmap of the Design-Based Matching Pipeline

Building on these design-based foundations, we now outline a pipeline that starts with

matching and then proceeds to inference and sensitivity analysis:

• Construct and evaluate matched sets. Given the specified covariates to

be balanced, we begin with the mechanics of optimal matching (Hansen, 2004;

Hansen and Klopfer, 2006): choosing a distance measure that defines similarity

on the covariates, setting calipers — maximum allowable distances between

treated and control units for inclusion in the same matched set — and imposing

structural constraints (e.g., requiring matches to be pairs). We then show how to

evaluate the resulting design in terms of both effective sample size and covariate

balance. For the latter, we focus on tests proposed by Hansen and Bowers (2008)

that compare the matched design’s covariate balance to what one would expect

under an equivalent completely randomized experiment within blocks (that is,

random assignment with a fixed number of treated units per block).
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• Draw causal inferences. Once a matched design is chosen, practitioners can

conduct inference under as-if randomization, either within a “sharp” causal

framework, which pertains to individual-level effects for all units, or a “weak”

framework, which pertains to a summary quantity of the unit-level causal effects,

typically the average treatment effect (ATE). For the sharp framework, we focus

on how researchers can use both simulation- and Normal-based approximations

to the exact randomization distribution to perform hypothesis tests, which can be

inverted to obtain confidence sets and point estimates. For the weak framework,

we cover estimation of the ATE and hypothesis tests about it. We emphasize

exposition and code for recent variance estimators tailored to designs with only

1 treated or 1 control unit per matched set (Fogarty, 2018; Pashley and Miratrix,

2021) — an important case, since such designs are optimal in terms of balance

and effective sample size (Gu and Rosenbaum, 1993; Rosenbaum, 1991; Hansen,

2004).

• Assess sensitivity. Finally, we turn to sensitivity analyses under both infer-

ential frameworks. We review established methods for conducting sensitivity

analysis for tests of sharp nulls under possible violations of as-if randomization

(Rosenbaum and Krieger, 1990; Gastwirth et al., 2000; Rosenbaum, 2018). We

then describe and implement new methods that extend sensitivity analysis to

tests of weak null hypotheses (Fogarty, 2023).

Below we present a flow diagram summarizing the overall pipeline, partitioned into

three sections aligned with the manuscript’s sections. The diagram displays each step

and decision point, the relevant R tools (whether existing packages or custom functions

included herein), and core references. All relevant code and replication materials are

publicly available in the manuscript’s companion GitHub repository
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Part 1:
Making a Matched Dataset
(toward Justifying As-If Randomization)

Part 2:
Causal Inference
(under As-If Randomization)

Part 3:
Sensitivity Analysis
(Departures from As-If Randomization)

Specify covariates to balance
• Includes coding and scaling of covariates

Specify calipers
• Caliper widths are relative to distance measures

Construct covariate distance matrix
• R: optmatch

Specify stratum structure constraints
• Ratio bounds: min/max # controls per treated unit
• Optional: fraction rejected and average # controls per treated

Optimally match
• R: optmatch
• Hansen (2004); Hansen and Klopfer (2006)

Evaluate matched design
• Diagnostics: balance and effective sample size
• R: RItools
• Hansen and Bowers (2008)

Reject or retain
matched design

Select framework:
sharp (individual effects) or

weak (average effects)

Draw inferences under weak framework
• Estimation: Difference-in-Means with weights
• Testing: Plug-in variance with Normal approx.
• R: bikvar; custom function (included herein)
• Pashley and Miratrix (2021); Fogarty (2018)

Draw inferences under sharp framework
• Testing: Exact, simulation, or Normal approx.
• Estimation: Test inversion (e.g., Hodges- Lehmann point estimator)
• R: randomizr

Evaluate sensitivity under weak framework
• R: custom function (included herein)
• Fogarty (2023)

Evaluate sensitivity under sharp framework
• R: senstrat
• Rosenbaum (2018)

Reject

Retain

WeakSharp

Figure 1: Flow diagram of the design-based matching pipeline.
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2. Implementation of the Matching Pipeline

We provide a high-level overview of the ideas behind matching and include code that

demonstrates how to implement those ideas with various R packages. We also work

through some of these steps “by hand” to underscore the underlying conceptual issues.

Doing so also gives practitioners more flexibility to adapt the matching pipeline to

their own needs.

We break the implementation into specific decision points that practitioners commonly

face, and present the pipeline in three main parts (see Figure 1):

Part 1: Making a Matched Dataset (toward Justifying As-If Randomization)

(a) How Do I Measure Similarity on My Chosen Covariates?

• Similarity on the Estimated Propensity Score

(b) How Can I Apply Rules for Matches to Ensure Comparability?

(c) How Can I Apply Rules for Matches to Improve Effective Sample Size?

(d) How Do I Actually Form the Matches?

(e) How Do I Decide Whether to Move Ahead with My Matched Design?

Part 2: Causal Inference (under As-If Randomization)

(a) How Do I Draw Inferences under the Sharp Framework?

(b) How Do I Draw Inferences under the Weak Framework?

Part 3: Sensitivity Analysis (Departures from As-If Randomization)

(a) How Do Inferences under the Sharp Framework Change under these Departures?

• Finding the Worst-Case Scenario of Hidden Confounding for Valid Inference
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– Separable Approximation

– Taylor Series Approximation

• Conducting Sensitivity Analysis under the Worst-Case Scenario

(b) How Do Inferences under the Weak Framework Change under these Departures?

Before turning to Part 1, we introduce a running example taken from Gilligan and

Sergenti (2008), which we use throughout this manuscript.

2.1 Running Example: United Nations Peacekeeping and Post-Conflict

Peace

We introduce matching through an example that examines the causal effect of United

Nations (UN) peacekeeping missions on the durability of post-conflict peace, a question

of central importance for both academic research and policy. Our example draws on

data from Gilligan and Sergenti (2008), whose title includes the phrase “Matching

to Improve Causal Inference,” underscoring the value of applying matching to study

the UN’s causal impact on post-conflict peace. These data are publicly available in

the supplementary information of the article’s webpage in the Quarterly Journal of

Political Science (DOI: 10.1561/100.00007051).

The dataset we use from Gilligan and Sergenti (2008) includes 87 observations, each

corresponding to a country’s peace period episode following a civil war, with episodes

beginning as early as January 1989 and data extending through December 2003. In

some episodes, UN peacekeepers intervened (e.g., Sierra Leone, Jan 2001 - Dec 2003),

while in others they did not (e.g., Macedonia, Sep 2001 - Dec 2003). The treatment

variable is UN intervention (UN), coded as 1 if a UN mission was present during the

peace period and 0 otherwise. The outcome variable is the duration of the peace spell,
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which Gilligan and Sergenti (2008) measure as the log of the number of days from

the start of peace until either the outbreak of a new conflict or right-censoring at

December 2003. This log-transformed outcome (ldur) captures the total length of

the peace period rather than the time elapsed after a potential UN intervention. In

practice, however, UN interventions almost always began immediately after the onset

of peace: “Of the 19 post-conflict UN interventions, the United Nations was present

within the first month for 16 of them” (Gilligan and Sergenti, 2008, p. 118). In what

follows, we set aside these measurement details.

As Gilligan and Sergenti (2008) state, “UN missions are not randomly assigned” (p. 89).

Whether peacekeepers are present during a given post-conflict peace period presumably

depends on baseline covariates measured by Gilligan and Sergenti (2008), including

the logged number of deaths (lwdeaths), the logged duration of the previous war

(lwdurat), ethnic fractionalization (ethfrac, a 0-100 index for which dividing by 100

is intended to represent the probability that two randomly chosen individuals belong

to different ethnic groups), logged population size (pop) and others. We implement

matching using these same covariates, but emphasize that our exercise is expository

and not intended as a replication of the original findings.

2.1.1 Loading the Data for the Running Example

To load the data, you could first download the replication files from the supplementary

information on the article’s webpage (DOI: 10.1561/100.00007051), save the files to

your working directory, and then use a package such as haven to load the Stata

(.dta) file, peace_pre_match.dta, into R. However, for our purposes, we recommend

loading our pre-created .rds file (peace_pre_match.rds), in which Stata’s monthly

numeric dates have been converted to R’s year-month format and the geographic region
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indicators recoded into a single factor variable (region). The command below loads

this pre-created dataset (peace_pre_match.rds) into the R environment as an object

named data.

# Define base URL for the Matching Guide GitHub repository
base_url <- "https://raw.githubusercontent.com/tl2624/matching-guide/main"

# Load the cleaned dataset
data <- readRDS(url(paste0(base_url, "/data/peace_pre_match.rds")))

2.2 Part 1: Making a Matched Dataset (toward Justifying As-If

Randomization)

In an observational setting, treatment is not assigned by the flip of a coin but depends

on individuals’ covariates. The goal of matching is to compare treated and control units

that have the same chances of treatment based on those covariates — i.e., the same

propensity scores. If we could observe propensity scores, it would be straightforward

to compare treated and control units by matching them directly on their propensity

scores. Because propensity scores are not directly observed, we instead aim to create

a collection of matched sets that is balanced — meaning that treated and control

observations are similar in their covariates.

Before turning to questions of covariate similarity and matching, it is important to note

that substantive transformations of covariates play a central role, as they determine

the inputs on which subsequent notions of similarity between units are based. These

transformations reflect substantive judgments and are often among the most important

decisions in practice. In this manuscript, however, we do not address these substantive

choices. Instead, we take the transformations used by Gilligan and Sergenti (2008) as

given. For example, they measure ethnic fractionalization (ethfrac) on a 0-100 scale

(rather than a 0–1 scale) and apply logarithmic transformations to covariates such
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as the number of deaths (lwdeaths) and the duration of the previous war (lwdurat),

among others. Our focus is on design and analysis decisions conditional on these

substantively chosen scales.

2.2.1 How Do I Measure Similarity on My Chosen Covariates?

In the simplest terms, matching is about ensuring apples-to-apples, rather than

apples-to-oranges, comparisons between treated and control observations (Rubin and

Waterman, 2006). To create matched sets in which treated and control groups are

similar in their covariates, we first need a distance measure that quantifies how close

any two observations are. With such a measure in hand, we can then construct sets of

treated and control observations that are close on this measure — i.e., apples-to-apples

in their pre-treatment characteristics.

We record the distances between treated and control units in a distance matrix: The

rows correspond to treated units and the columns to control units. Each cell of the

matrix records the distance between a specific treated unit and a specific control unit,

as defined by a distance measure. This distance measure takes the baseline covariates

of the two units and maps them to a single nonnegative number, with smaller values

indicating greater similarity.

In our setting, we are interested in similarity across 9 covariates, named in the object

covs.

# Define character vector of the 9 covariate names in the dataset
covs <- c("lwdeaths", "lwdurat", "ethfrac", "pop", "lmtnest", "milper", "bwgdp",

"bwplty2", "region")

The first four — lwdeaths, lwdurat, ethfrac, and pop — were introduced earlier.

The others include a logged measure of the proportion of a country’s land area that is
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mountainous (lmtnest), the logged total number of military personnel in a country

(milper), logged GDP per capita before the last civil war (bwgdp), the Polity score (a

˘10 to 10 scale, from autocratic to democratic institutions) before the last civil war

(bwplty2), and a region factor (region) with categories for Eastern Europe, Latin

America, Asia, Sub-Saharan Africa, and North Africa/Middle East.

All of these covariates are measured before treatment and presumably determine the

chance of a UN intervention during a country’s peace period. Our interest in them

stems primarily from their role in determining those intervention probabilities. Yet

many of these covariates may also be prognostic; that is, they help predict the outcome

of interest in Gilligan and Sergenti (2008), the log duration of the peace period (ldur)

that countries would potentially experience with or without a UN intervention. This

prognostic value of covariates can provide an additional reason to match on them

(Hansen, 2008a; Sales et al., 2018).

There are many ways to measure the distance between a treated and a control unit.

For example, we might compare units using the Euclidean distance — i.e., the square

root of the sum of squared differences — across all baseline covariates. To do so, we

first convert the factor variable region, which stores categorical labels, into a set of

dummy (0 or 1) variables for each region. This conversion ensures that distances

between treated and control units can be computed, since distance measures require

numeric variables rather than categorical labels.

# Install "dplyr" package (only run if you don't already have it installed)
# install.packages("dplyr")

# Load dplyr package for data manipulation (mutate, group_by, summarize, etc.)
library(dplyr)

# Convert categorical variable "region" into 0/1 dummy indicators
data <- data |> # Pipe (|>) to pass left-hand result into next function call

mutate( # Use mutate() to create new variables by transforming existing columns
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# ifelse() returns one value if the condition is TRUE and another if FALSE
eeurop = ifelse(test = region == "eeurop", yes = 1, no = 0),
lamerica = ifelse(test = region == "lamerica", yes = 1, no = 0),
asia = ifelse(test = region == "asia", yes = 1, no = 0),
ssafrica = ifelse(test = region == "ssafrica", yes = 1, no = 0),
nafrme = ifelse(test = region == "nafrme", yes = 1, no = 0)

)

# New character vector of covariate names with "region" replcaed by dummy indicators
expanded_covs <- c(
# Setdiff() returns elements in 'x' that are not in 'y'

setdiff(x = covs, y = "region"), # Drops "region" from the covariate list
"eeurop", "lamerica", "asia", "ssafrica", "nafrme"

)

As an example, we calculate the Euclidean distance between post-conflict Liberia,

where the UN did intervene, and post-conflict Guinea-Bissau, where the UN did not.

# Extract covariate values for Liberia and Guinea-Bissau (cname = country name)
liberia <- data[data$cname == "Liberia", expanded_covs]
guinea_bissau <- data[data$cname == "Guinea-Bissau", expanded_covs]

# Compute Euclidean distance between the two countries on these covariates
sqrt(sum((liberia - guinea_bissau)ˆ2)) # Display the Euclidean distance

[1] 57.44263

We can obtain the full matrix of pairwise distance values using match_on() from the

optmatch package. We do not need to manually recode factor variables into dummy

indicators because match_on() handles this conversion automatically.

# Create a formula: UN (treatment indicator) ~ covariates
# Note: we keep "region" in covs as a factor
cov_fmla <- reformulate(termlabels = covs,

response = "UN")

# Install optmatch if not already installed
# install.packages("optmatch")

# Load optmatch, which provides the match_on() function
library(optmatch)

# Compute Euclidean distance matrix between treated (UN = 1) and control (UN = 0)
dist_mat_euc <- match_on(x = cov_fmla, # Formula for covariates
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data = data, # Dataset used
standardization.scale = NULL, # No rescaling of covariates
method = "euclidean") # Use Euclidean distance

# Add country names (cname) as row/column labels for clarity
dimnames(dist_mat_euc) <- list(data$cname[data$UN == 1], data$cname[data$UN == 0])

# Display submatrix of distances:
# treated units in rows 11–15 vs. control units in columns 27–30
round(x = dist_mat_euc[11:15, 27:30],

digits = 2) # Number of decimal places to round

Niger Guinea Togo Central African Republic
Sierra Leone 94.21 101.18 116.32 116.94
Zaire 26.68 29.87 45.63 46.57
Rwanda 66.75 71.57 77.04 76.03
Mozambique 133.47 140.60 155.40 155.80
Namibia 246.44 253.23 268.35 268.08

In this subset of the full distance matrix, the first entry is the Euclidean distance

of Sierra Leone (treated) from Niger (control). The last listed entry is the distance

between Namibia (treated) and the Central African Republic (control).

One concern with Euclidean distance is that it depends on the scale of the covariates.

For example, the difference between a country in Sub-Saharan Africa (ssafrica =

1) and a country in Latin America (ssafrica = 0) would contribute the same to

the Euclidean distance as the difference between two countries with GDP per capita

values of $3000 and $3001. Intuitively, we would not want such a tiny difference in

economic size to be treated as equally important as belonging to different regions

of the world. More generally, we want differences across variables to be placed on a

comparable scale, so that a meaningful difference in one variable counts about the

same as a difference of similar importance in another.

Another concern with Euclidean distance is that it ignores correlations among covari-

ates. For example, countries with larger populations (pop) usually have more military
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personnel (milper), if only because a larger population provides a greater pool of

potential recruits. Therefore, differences in both covariates (pop and milper) may

largely reflect the same underlying factor — population size (pop). Yet Euclidean dis-

tance adds these differences separately, as if they were unrelated, which can exaggerate

the overall distance between two observations.

The Mahalanobis distance (Mahalanobis, 1936) addresses both of these concerns. First,

it standardizes covariates so that differences are placed on a comparable scale. Second,

the Mahalanobis distance adjusts for correlations among covariates, ensuring that

highly related variables are not effectively counted twice. We can construct a distance

matrix based on Mahalanobis rather than Euclidean distances as follows.

# Compute Mahalanobis distance matrix between treated (UN = 1) and control (UN = 0)
dist_mat_mah <- match_on(

x = cov_fmla,
data = data,
standardization.scale = NULL,
method = "mahalanobis" # Use Mahalanobis distance

)

The standardization in the Mahalanobis distance is distinct from researchers’ substan-

tive choices about how to transform covariates. Substantive transformations — such

as logging certain covariates — reflect subject-matter considerations and precede the

matching procedure. The standardization in the Mahalanobis distance is a statistical

device that operates on the pre-specified covariates to compute distances comparably

across covariates. The purpose of this device is to facilitate matches that are similar

on the original covariate scales.

Similarity on the Estimated Propensity Score So far, we have focused on ways

to measure distance between treated and control units across many covariates in order

to identify which units are most similar and group them together to achieve covariate
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balance. However, when there are many covariates, it becomes difficult to find treated

and control units that are similar on all covariates. This challenge is often referred to

as the “curse of dimensionality.”

A common way to address this problem is to reduce the information from many

covariates into a lower-dimensional form. The estimated propensity score does this

by collapsing information from all covariates into a single number. This number

represents a transformation of an estimated linear index of covariates that accounts

for how strongly each covariate predicts treatment.

Consider, for example, a logistic model for the estimated propensity score of an

individual unit i. We write this model as

λ̂(xi) = 1
1 + exp(−β̂⊤xi)

,(1)

where xi is the covariate vector, β̂ is the vector of estimated coefficients, and the

superscript ⊤ denotes the transpose, turning the row vector β̂ into a column vector.

The quantity β̂⊤xi is the estimated linear index, and the inverse logistic function,

1/(1+exp(−x)), maps any real-valued input, x, onto the interval (0, 1). The estimated

linear covariate index for unit i, β̂⊤xi, is simply the logit, i.e., log odds, transformation

of λ̂(xi) in (1).

This quantity, λ̂(xi), is a simple transformation of a linear index of covariates that

best “separates” treated from control units. The estimated coefficients (β̂) “separate”

treated from control units on the linear index because the coefficients are chosen to

maximize a likelihood that rewards large differences between the groups. When treated

and control units have little or no covariate overlap, the estimated linear indices can

diverge substantially, very positive for treated units and very negative for controls.
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With greater overlap, the estimated linear indices for treated and control units are

similar, clustering near zero.

This estimation process reflects how predictive each covariate is of treatment. When

treated and control observations lack overlap on a covariate, that covariate is highly

predictive of treatment and therefore receives an estimated coefficient with a large

magnitude. When there is substantial overlap on a covariate, it is less predictive

of treatment, and the magnitude of its coefficient is small. Consequently, when we

assess similarity on the estimated linear index of covariates in (1), the estimated

coefficients assign greater importance to covariates that strongly predict treatment

and less importance to those that do not.

To see this logic in action, we first estimate a logistic propensity score model using

all covariates except region, which we exclude because some regions perfectly — or

nearly perfectly — predict treatment assignment, leading to (near-)complete separation

(Albert and Anderson, 1984).

# Formula for UN ~ covariates (excluding "region")
psm_cov_fmla <- reformulate(termlabels = setdiff(x = covs, y = "region"),

response = "UN")

# Fit logistic regression for propensity score model
psm <- glm(

formula = psm_cov_fmla, # Treatment ~ covariates
family = binomial(link = "logit"), # Logistic regression (logit link)
data = data

)

Using this fitted propensity score model, we can extract each unit’s estimated linear

covariate index, β̂⊤xi, as follows.

# Extract logit propensity scores (linear predictors from fitted model)
lin_cov_inds <- psm$linear.predictors # Same as model.matrix(psm) %*% coef(psm)
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Below we can see that the estimated linear covariate indices from the model psm

correspond exactly to the logits (i.e., the log-odds transformations) of the model’s

predicted probabilities of treatment, which range between 0 and 1.

# Extract estimated propensity scores (predicted probabilities of UN = 1)
p_scores <- psm$fitted.values

# Check that lin_cov_inds equals log odds (propensity scores on logit scale)
all.equal(lin_cov_inds, log(p_scores/(1 - p_scores)))

# Also check that p_scores equals logistic(lin_cov_inds)
all.equal(p_scores, 1/(1 + exp(-lin_cov_inds)))

To see how two observations that differ on many covariates can still have similar

estimated propensity scores, consider post-conflict Namibia (treated) and Burundi

(control). The two are similar on some covariates, such as logged military personnel

(milper), but — consistent with the “curse of dimensionality” — very different

on others, such as duration of the last war (lwdurat) and ethnic fractionalization

(ethfrac). Yet the estimated linear indices for Namibia and Burundi differ by only

a minuscule amount. This small difference occurs because the covariates on which

Namibia and Burundi differ greatly have small estimated coefficients in the propensity

score model (e.g., approximately -0.01 for lwdurat and approximately 0 for ethfrac),

while those on which the two observations are similar, such as milper, have large

estimated coefficients (approximately -0.92).

To illustrate these broader patterns, the boxplot below compares the distributions of

the estimated linear covariate index for treated and control groups.
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Figure 2: The empirical distributions of the linear covariate index for treated and control
groups.

As the figure above shows, there is some, but not a lot of, overlap between treated and

control groups. In accordance with our earlier discussion of how the estimated linear

covariate index “separates” treated from control units, many control observations have

very negative values (as low as -7.52), far from the treated units’ range of -2.24 to 2.21.

Nevertheless, a sufficient number of treated and control observations have estimated

linear covariate indices that cluster around 0, indicating covariate overlap for at least

a subset of treated and control observations.

2.2.2 How Can I Apply Rules for Matches to Ensure Comparability?

The discussion above on measuring covariate distances between treated and control

observations helps identify which treated-control pairs are similar. The goal of
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identifying these similar treated-control pairs is to form matched sets that are closely

aligned on their covariates, thereby improving balance between treatment and control

groups. In practice, we do this by excluding potential matches that are “too dissimilar.”

There are two common ways to do this:

• Exact matching: Require that units be identical on some subset of important

covariates, typically those that are categorical or coarse enough for units to take

the same values.

• Calipers: Impose a threshold for the maximum allowable distance so that no

matched set may include a treated and a control unit that are farther apart than

this caliper.

As a simple example to build intuition, we will impose the following constraints:

• Observations can belong to the same matched stratum only if they are in the

same geographic region.

• Treated and control observations more than two points apart on the Polity score

cannot be in the same matched set.

Below we impose the first constraint, requiring an exact match on region. Doing

so produces separate distance matrices containing the Euclidean distances on the

covariate used to define the exact match (region), where all entries are 0, indicating

that treated and control units belong to the same region.

# Create distance structure: 0 if units are in the same region, Inf otherwise
em_region <- exactMatch(x = UN ~ region,

data = data)

Now we impose the second constraint: We construct a distance matrix based on

the Polity score, bwplty2, with a caliper of 2. This matrix records the Euclidean
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difference in Polity scores when the difference is 2 or less, and assigns a value of

∞ (denoted in R as Inf) when the difference exceeds 2. The ∞ entries are crucial

because optmatch minimizes the sum, across all matched sets, of the within-set sums

of covariate distances between each treated-control pair. Consequently, any treated–

control pair differing by more than 2 points on the Polity score is assigned an overall

distance of ∞, which prevents them from being matched.

# Euclidean distance on Polity score (bwplty2) with caliper = 2
# Pairs differing by >2 are set to Inf
euc_dist_polity_cal_2 <- match_on(x = UN ~ bwplty2,

caliper = 2, # Set caliper
data = data,
standardization.scale = NULL,
method = "euclidean")

Note that we used Euclidean distance here because, after exactly matching on geo-

graphic region, matching proceeds on only 1 covariate (Polity score), so we do not

have to worry about covariates’ relative scales.

Finally, we combine the two constraints into distance matrices defined within each

region. We construct these region-specific matrices by “adding” the em_region and

euc_dist_polity_cal_2 objects, as shown below.

# Create overall distance matrix by element-wise addition of two distance matrices
overall_dist_mat <- em_region + euc_dist_polity_cal_2

2.2.3 How Can I Apply Rules for Matches to Improve Effective

Sample Size?

Beyond comparability in covariates, we also care about the matched study’s size. The

effective sample size depends not simply on the total number of units included in our

matches. Effective sample size also depends on how those units are arranged across

the matched sets.
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The optmatch package will always produce matches with a particular arrangement

of units across sets. In particular, all sets contain either 1 treated unit or 1 control

unit — an overall structure that minimizes imbalance while excluding as few units as

possible (Rosenbaum, 1991; Gu and Rosenbaum, 1993; Hansen, 2004). In practice,

optimal full matching can yield lopsided sets, with either 1 treated matched to many

controls or 1 control matched to many treated units, which has implications for the

effective sample size.

In the optmatch package, the effective sample size is defined as the sum, across

matched sets, of the harmonic mean of the numbers of treated and control units within

each set. The formal definition is given by

Effective Sample Size:
S∑

s=1

[(
m−1

s + (ns − ms)−1
)

/2
]−1

,(2)

where the index s runs over the {1, . . . , S} matched sets, with ms denoting the number

of treated units in set s and ns − ms the number of control units. With ns denoting

the number of units in set s, the total number of individuals included in the matched

study is n = ∑S
s=1 ns.

From the formula in (2), we can see how the effective sample size depends on the

arrangement of units across sets. For example, in a study with 4 total units, the

effective sample size would be 2 if the units were arranged into 2 matched pairs. By

contrast, in a study of the same total size but arranged as a single set with 1 treated

unit and 3 controls, the effective sample size would be 1.5. The effective sample size is

larger in the former arrangement because it provides two distinct treated-versus-control

comparisons, whereas the latter provides only one.

23



Leavitt and Miratrix

This definition of effective sample size anticipates subsequent outcome analysis under

as-if randomization, as effective sample size bears directly on the precision of estimators

and the power of hypothesis tests. Assuming constant, additive treatment effects within

a set, the variance of the Difference-in-Means — the average outcome among treated

units minus the average outcome among control units — in that set is minimized

when the harmonic mean is largest (Hansen and Bowers, 2008; Hansen, 2011). The

harmonic mean reaches its maximum when the numbers of treated and control units

are equal. Thus, all else equal, matched pairs and other balanced sets provide more

information about causal effects than lopsided sets with unequal treated-to-control

ratios.

One straightforward way to increase effective sample size is to relax restrictions on

which units can be matched. Relaxing calipers can admit additional units into the

matched design by allowing matches for units that would otherwise be discarded. For

instance, we might widen the caliper on Polity score from 2 to 3 and then rebuild the

distance matrix.

# Apply a caliper of width 3 to the polity Euclidean distance matrix
euc_dist_polity_cal_3 <- match_on(x = UN ~ bwplty2,

caliper = 3,
data = data,
standardization.scale = NULL,
method = "euclidean")

# Combine regional exact match distance with polity distance
em_region + euc_dist_polity_cal_3

Doing so increases the effective sample size, but such gains need not be substantial.

When newly admitted units are absorbed into existing matched sets — each of which

contains only one treated or one control unit — rather than generating additional

treated–versus-control comparisons, the resulting contribution to effective sample size
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is limited. More generally, as the formula in (2) makes clear, the effective sample

size depends on how units are distributed across sets: When units, including newly

admitted ones, are concentrated in only a few sets, the resulting gain in effective

sample size is modest.

Instead of relying solely on caliper width, researchers can also shape the effective

sample size by controlling the structure of matched sets via the min.controls and

max.controls arguments in optmatch’s fullmatch() function. These arguments

specify lower and upper bounds, respectively, on the ratio of control to treated units

within each matched set. By default, min.controls = 0 and max.controls = Inf,

which impose no restrictions on matched set composition. Changing these defaults

allows researchers to control how balanced or lopsided matched sets may be, thereby

shaping the effective sample size.

To illustrate, suppose we want to restrict matches using the overall_dist_mat

introduced earlier. We know that optmatch will divide the data into matched sets

containing one treated unit and any positive number of controls, or one control unit and

any positive number of treated units. However, we can impose additional constraints

on this full matching, such as requiring a minimum control-to-treated ratio of 1:2

— that is, at least one control for every two treated units (min.controls = 0.5) —

and no more than two controls per treated unit (max.controls = 2). Under these

restrictions, allowable matched sets could include 2 treated units with 1 control, 1

treated unit with 1 control (a matched pair), or 1 treated unit with 2 controls.

# Full matching using overall distance matrix
fullmatch(

x = overall_dist_mat,
min.controls = 0.5, # At least 0.5 controls per treated unit

# (i.e., no more than 2 treated per control)
max.controls = 2, # At most 2 controls per treated unit
omit.fraction = NULL, # Governs fraction of units discarded
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mean.controls = NULL, # Governs average controls per treated unit
# Only one of omit.fraction or mean.controls may be non-NULL

data = data
)

Note, in addition, that the fullmatch() arguments of omit.fraction and

mean.controls provide explicit levers for controlling how many treated and control

units are discarded, though at most one of omit.fraction or mean.controls may

be specified.

Imposing ratio constraints can have mixed consequences. In some cases, balance

may worsen if a control is forced to match with a less similar treated unit — though

still within the specified calipers — in order to satisfy the minimum and maximum

ratio rules. In other cases, such constraints may improve effective sample size by

redistributing how units are grouped without hurting balance. However, if the ratio

constraints are too stringent, they can reduce effective sample size by forcing too many

units to be discarded.

In applied settings, final choices of calipers and ratio constraints typically follow

iterative checks of both covariate balance and effective sample size. Practitioners

often compare several specifications and select among those that satisfy diagnostics

for both goals. Hansen and Sales (2015) outline how this process can be carried out

in a structured way, drawing on the stepwise intersection–union principle (SIUP) of

hypothesis testing.

2.2.4 How Do I Actually Form the Matches?

The simple matching example above — based on an exact match on geographic region

and a caliper on Euclidean distance for a single covariate (Polity score) — serves

to illustrate the basic ideas. When matching on many covariates, however, we will
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often prefer some combination of Mahalanobis distance and propensity score matching,

sometimes adding calipers on specific covariates. In what follows, we use rank-based

Mahalanobis distance, which has the advantage of being less sensitive to outliers and

differences in scales across covariates (Rosenbaum, 2010). We further constrain the

matching by imposing a caliper on the estimated propensity score, requiring treated

and control observations to come from the same geographic region, and applying

additional calipers directly to two covariates: ethnic fractionalization (ethfrac) and

logged GDP per capita (bwgdp).

We impose a caliper equal to 0.5 standard deviations of the logit of the estimated

propensity score (the estimated linear covariate index defined above). This choice

is larger than one rule of thumb emanating from Cochran and Rubin (1973), which

recommends a caliper less than or equal to 0.20 standard deviations. Given that the

standard deviation of the logit index is approximately 1.96, our choice of 0.5 permits

treated and control units to differ by up to roughly 0.98 on the logit scale, compared

to about 0.39 under the 0.20 guideline.

# Add linear predictors from logistic regression (psm$linear.predictors) to dataset
data$logit_p_score <- lin_cov_inds

# Population standard deviation of logit_p_score (divides by n, not n - 1)
pop_sd_logit <- sqrt(mean((data$logit_p_score - mean(data$logit_p_score))ˆ2))

# Distance matrix for propensity score (logit of estimated treatment probability)
ps_mat <- match_on(x = UN ~ logit_p_score,

caliper = 0.5 * pop_sd_logit,
data = data,
standardization.scale = NULL,
method = "euclidean")

Below we construct the distance matrix for rank-based Mahalanobis distance.

# Rank-based Mahalanobis distance on covariates
# Covs was defined earlier as the set of covariate names; here we drop "region"
rank_mah_mat <- match_on(
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x = reformulate(termlabels = setdiff(x = covs, y = "region"),
response = "UN"),

data = data,
standardization.scale = NULL,
method = "rank_mahalanobis" # Use rank-based Mahalanobis distance

)

Finally, we construct the Euclidean distance matrix for ethnic fractionalization

(ethfrac) and logged GDP per capita (bwgdp) using calipers of 35 and 2, respectively.

The exact-match constraint on region has already been defined through the object

em_region above.

# Compute Euclidean distance matrix for ethnic fractionalization
eth_mat <- match_on(

x = UN ~ ethfrac,
caliper = 35,
data = data,
standardization.scale = NULL,
method = "euclidean"

)

# Compute Euclidean distance matrix for logged GDP per capita
bwgdp_mat <- match_on(

x = UN ~ bwgdp,
caliper = 2,
data = data,
standardization.scale = NULL,
method = "euclidean"

)

We then combine the ps_mat, rank_mah_mat, eth_mat, bwgdp_mat, and em_region

objects to form the overall distance structure. We then pass the combined object

to optmatch’s fullmatch() function, imposing a constraint that no more than 4

control units may be matched to any treated unit. If instead we wanted to perform

pair matching, the optmatch package allows users to directly specify a matched-

pair structure via the pairmatch() function. Equivalently, we could implement pair

matching by setting min.controls = 1 and max.controls = 1 in the fullmatch()
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call. The code chunk below proceeds with full matching under the constraint that no

more than 4 controls may be matched to any treated unit.

# Full matching on PS + rank-based Mahalanobis + separate Euclidean distances
# (ethfrac, bwgdp) + region exact match
fm <- fullmatch(

# x specifies the distance structure for matching: it can be
# (i) a distance-specification formula passed to match_on(),
# (ii) a precomputed distance matrix, or
# (iii) as here, a sum of distance specifications constructed via match_on()
x = ps_mat + rank_mah_mat + eth_mat + bwgdp_mat + em_region,
data = data,
max.controls = 4 # Up to 4 controls per treated; min.controls = 0 by default

)

To calculate the effective sample size of the matched observations, we use the following

function from optmatch.

# Effective sample size of matched sets
effectiveSampleSize(fm)

[1] 15.26667

Referring back to (2), this reported effective sample size of approximately 15.27 equals

the sum across sets of the within-set harmonic mean of the number of treated and

control subjects. This effective sample size reflects the matched structure in which no

set contains more than 4 controls for any 1 treated observation.

# Summarize matched sets (set sizes, structure) and report effective sample size
summary(fm)

Structure of matched sets:
1:0 2:1 1:1 1:2 1:3 1:4 0:1

6 1 4 4 2 1 45
Effective Sample Size: 15.3
(equivalent number of matched pairs).

The notation in the summary() output of optmatch indicates the ratio of treated to

control observations within each matched set. For example, 1:0 indicates 1 treated
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unit and no controls (effectively an unmatched treated unit). Similarly, 1:2 indicates 1

treated unit and 2 controls, and 0:1 indicates no treated units and 1 control (effectively

an unmatched control). Below each label, the output shows how many matched sets

have that particular structure.

If we examine the object returned by the matching call (fm), we see that optmatch

labels each observation according to its matched set, assigning NA to those not included.

Because we performed exact matching by region, optmatch labels each matched set

using the name of the exact-match stratum followed by a set index within that stratum.

For example, the label lamerica.1 denotes the first matched set within the Latin

America stratum.

To see which units were matched together, we can add the fm object to the dataframe

and then tabulate. For example, to view the ssafrica.3 set, we run the following.

# Add matched set ID to data for each unit
data$fm <- fm

# Look at one matched set ("ssafrica.3") for illustration
data |>

filter(fm == "ssafrica.3") |> # Keep only units in set "ssafrica.3"
# Display selected variables

select(cname, UN, region, logit_p_score, ethfrac, bwgdp, bwplty2)

# A tibble: 4 x 7
cname UN region logit_p_score ethfrac bwgdp bwplty2
<chr> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 Burundi 0 ssafrica 0.508 3.55 5.35 -7
2 Rwanda 1 ssafrica 0.148 12.9 5.68 -7
3 Somalia 0 ssafrica 0.209 7.67 6.61 -7
4 Lesotho 0 ssafrica 0.558 22.2 6.28 0

We can see that the exact match on geographic region holds: All 4 countries are

located in Sub-Saharan Africa. The logit of the estimated propensity score is similar

across units, though not identical. The treated country, Rwanda, is matched to three
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controls — Burundi, Somalia, and Lesotho — and in each case the distance falls

within 0.5 standard deviations of the estimated logit propensity scores (approximately

0.98), the caliper we specified. Likewise, Rwanda’s distances to each of the 3 control

units fall within the calipers of 35 for ethnic fractionalization (ethfrac) and 2 for

logged GDP per capita (bwgdp). By contrast, distances between control countries can

technically exceed these thresholds, since optmatch enforces calipers only between

treated and control units, not among controls.

We can also see that some covariates used in the propensity score model and the

rank-based Mahalanobis distance — such as Polity score (bwplty2) — still show

modest imbalance within this matched set. This imbalance is unsurprising. We

applied a caliper on the logit of the estimated propensity score and matched on the

rank-based Mahalanobis distance including bwplty2, but we did not apply a caliper

directly to bwplty2, though such a caliper could easily be added if desired.

2.2.5 How Do I Decide Whether to Move Ahead with My Matched

Design?

Once we have constructed our matched sets, we want to evaluate the overall quality

of the matched design. Covariate balance is an important aspect of this evaluation.

To assess covariate balance, we compare the balance in our matched observational

study with the balance we would expect to see in a completely randomized experiment

within blocks (Hansen and Bowers, 2008).

Below we calculate adjusted covariate means for the treated and control groups

by averaging set-specific means across matched sets, with each set weighted by its

contribution to the effective sample size. We also report standardized differences,

defined as the treated-minus-control difference in these adjusted means divided by
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the pooled standard deviation of the covariate across treated and control units in the

overall data (including both matched and unmatched units).

# Install "RItools" package (only run if you don't already have it installed)
# install.packages("RItools")

# Load RItools package for balance diagnostics (balanceTest)
library(RItools)
# Covariate balance test
cov_bal <- balanceTest(

# Formula: treatment ~ covariates
# update(): keep the original formula (. ~ .)
# and add stratification by matched set, + strata(fm)
fmla = update(cov_fmla, . ~ . + strata(fm)),
data = data,
p.adjust.method = "none" # Method of p-value adjustment (none here)

)

Before matching After matching

Covariate Control mean Treated mean Std. diff Control mean Treated mean Std. diff
Log Cumulative Battle Deaths from Last War 6.65 8.98 0.84* 8.34 8.57 0.08
Duration of Last War 50.28 80.53 0.39 60.51 73.23 0.16
Ethnic Fractionalization 56.50 49.21 -0.28 51.75 57.50 0.22
Log Population Size 9.51 8.75 -0.64* 8.89 8.91 0.02
Log Mountainous 2.22 2.80 0.43 2.69 2.82 0.09
Log Military Personnel 3.87 3.25 -0.42 3.63 3.54 -0.06
Log GDP per Capita Before Last War 6.56 6.59 0.03 6.73 6.55 -0.17
Democracy (Polity Score) Before Last War -0.84 -2.58 -0.32 -2.19 -2.54 -0.07
Asia 0.19 0.00 -0.68* 0.00 0.00 0.00
Eastern Europe 0.15 0.37 0.51* 0.46 0.46 0.00
Latin America 0.12 0.21 0.25 0.08 0.08 0.00
North Africa & Middle East 0.12 0.11 -0.04 0.08 0.08 0.00
Sub-Saharan Africa 0.43 0.32 -0.23 0.38 0.38 0.00

Table 1: Adjusted covariate means for treated and control groups and standardized treated–
control differences, before and after matching. Asterisks denote two-tailed p-values less than
or equal to 0.05.

In Table 1 above, the adjusted means offer a direct description of balance. The

standardized differences place all covariates on a common scale, enabling at-a-glance

comparisons of imbalance across covariates. Stars indicate covariates for which the

adjusted mean difference would be unusually extreme under a block-randomized

experiment that assigns treatment completely at random within matched sets, holding

fixed the observed number of treated units in each set. The stars are based on a
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Normal approximation to the randomization distribution of adjusted mean differences,

and, because no adjustments are made for multiple comparisons, these stars are

conservative. That is, for any given covariate, the corresponding adjusted mean

difference is, if anything, more likely than the nominal rate to fall in the tails of its own

randomization distribution under complete random assignment within matched sets.

Alternative adjustments for testing multiple covariates are available, such as the Holm

procedure (Holm, 1979), which is the default option in RItools’s balanceTest()

function.

One concern with balance tests is that high p-values may arise not from improved

covariate balance but from the reduction in effective sample size that typically ac-

companies the matching process (Austin, 2008; Imai et al., 2008). As Hansen (2008b)

notes, however, this possibility is less troubling than it first appears. The same increase

in standard errors that produces high p-values for covariate balance tests will also

carry over to subsequent causal inferences, meaning that those high p-values remain

informative: They suggest that we are, if anything, less likely to overstate our causal

conclusions than if the p-values had been significant.

Regardless of whether the balance tests are statistically significant, there are also

established guidelines for what constitutes sufficient balance. While precise thresholds

depend on context and substantive judgment about each covariate’s importance, two

rules of thumb appear in Austin (2009) and Stuart (2010). Austin (2009) suggests that

standardized differences of 0.1 or greater indicate inadequate balance on a covariate,

whereas Stuart (2010), following Rubin (2001), proposes a more lenient threshold of

0.25. In our case, all covariates meet this latter standard, and none show statistically

significant differences, indicating that observed imbalances would not be unusual under

a completely randomized experiment within blocks (i.e., under as-if randomization).
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In addition to assessing balance on each covariate individually, Hansen and Bowers

(2008) also propose an omnibus, chi-squared (χ2) test that evaluates balance across all

covariates and their linear combinations simultaneously. We conduct this test below.

# Extract overall chi-square balance test results, stratified by matched set (fm)
cov_bal$overall["fm", ]

chisquare df p.value
fm 2.631007 8 0.9553417

This χ2 balance test yields an observed test statistic of 2.63 and a corresponding

p-value of 0.96. Our high p-value indicates that the observed level of covariate balance

is consistent with what we would expect in a completely randomized experiment

within blocks.

Despite the high p-value, there is no guarantee that balance is sufficient for as-if

randomization. Residual imbalance on observed covariates and hidden imbalance

on unobserved ones may undermine the as-if randomization assumption. For now,

we proceed under the as-if randomization assumption, but we will later assess how

sensitive our inferences are to violations of it due to such imbalances.

2.3 Part 2: Causal Inference (under As-If Randomization)

In both the sharp and weak frameworks, the causal targets of inference are defined

through potential outcomes. Under what is known as SUTVA, the stable unit treatment

value assumption (Rubin, 1980, 1986; Cox, 1958), each unit has two potential outcomes:

a value the outcome would take if that unit were assigned to treatment and a value the

outcome would take if that unit were assigned to control. Let ysi(1) and ysi(0) denote

these potential outcomes, respectively, for unit i in set s, where the index i runs over

the {1, . . . , ns} units in set s. The individual treatment effect is τsi = ysi(1) − ysi(0).
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With n = ∑S
s=1 ns total units, let τ = (τ1,1, τ1,2, . . . , τS,ns)⊤ collect all n unit-level

effects, indexed first by matched set and then by unit within set, and write the ATE

as τ = (1/n)∑S
s=1

∑ns
i=1 τsi.

Both τ and τ are defined only for the subset of units retained after matching, which

often differs from the original set of units prior to matching (Rosenbaum and Rubin,

1985; Rosenbaum, 2012). This difference is especially important when retention is

driven by overlap in the estimated propensity score, as the resulting study population

can be difficult to interpret substantively. In such settings, it is often preferable to define

the study population directly in terms of a small number of substantively meaningful

covariates, reflecting the argument in Rosenbaum (2010) that it is “usually better

to go back to the covariates themselves . . . perhaps redefining the population under

study to be a subpopulation of the original population” (p. 86), as also emphasized

by Stuart (2010). Building on this insight, subsequent approaches seek to define

the matched study population directly in terms of a small number of substantively

meaningful covariates (Fogarty et al., 2016; Traskin and Small, 2011).

The breadth of the study population retained after matching depends in part on the

relative abundance of treated and control units across covariate space. When one

treatment arm is sparsely represented in regions dominated by the other, overlap may

be limited to a narrow region of covariate space and include relatively few units. All

else equal, a larger pool of units available for matching supports overlap over a wider

region of covariate space and a larger, more interpretable study population over which

the target of inference is defined.

These targets of inference, τ nor τ , defined among the matched units, cannot be

directly calculated. Even in a randomized experiment, we cannot assign a country

emerging from civil war to receive a UN peacekeeping mission, observe how long the
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ensuing peace lasts, and then rewind time to observe how long peace would have

lasted in the absence of a UN peacekeeping mission. In other words, for each unit we

observe only one of its two potential outcomes. Let ysi denote this observed outcome,

which equals the treated potential outcome when unit i in set s receives the treatment

and the control potential outcome otherwise. Because the individual-level causal effect

can never be directly observed — only one potential outcome is realized for each unit

— we must rely on statistical inference to draw conclusions about τ and τ .

We consider inference under the sharp and weak frameworks, targeting τ and τ , respec-

tively. Ongoing work shows how both types of effects can be inferred simultaneously

under as-if randomization (Chung and Romano, 2013; Ding, 2017; Wu and Ding, 2021;

Cohen and Fogarty, 2022), though they cannot generally be unified in sensitivity

analyses (Fogarty, 2023). When researchers must choose between the two, the decision

depends on both statistical properties and substantive goals.

• Statistically, the sharp framework specifies all missing potential outcomes, al-

lowing exact randomization inference under minimal assumptions. The weak

framework leaves some outcomes unspecified and instead relies on variance

estimation and a Normal approximation, which can perform poorly in small

samples or when outcomes are skewed with extreme outliers. In such cases — or

whenever one wants exact p-values under minimal assumptions — permutation

inference under the sharp framework may be preferable.

• Substantively, researchers usually test a constant effect in the sharp framework.

Such a hypothesis may be unrealistic or of limited scientific interest (Gelman,

2003, 2011). The weak framework, by contrast, accommodates heterogeneous

effects across units, making the ATE a more relevant target in many settings.

Nevertheless, tests of a constant effect can provide a useful approximation to a
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more complex hypothesis with heterogeneous effects (Rosenbaum, 2010, pp. 44–

46), and such tests remain valid for a range of bounded but heterogeneous effects

(Caughey et al., 2023).

The Assignment Process as the Basis for Inference Regardless of the frame-

work, inference is based on the treatment assignment process. Let zsi denote an

indicator for whether unit i in matched set s is treated (zsi = 1) or not (zsi = 0). We

collect these indicators for all units in set s into the vector zs = (zs1, . . . , zsns)⊤. Stack-

ing these vectors across all sets gives the full assignment vector z = (z11, . . . , zSnS
)⊤,

again indexed first by matched set and then by unit within set. For inference, we

condition on the number of treated units within each set, ms, even if the actual

assignment mechanism were to consist of ns independent assignments. For further

discussion of this form of “conditional as-if analysis,” see Pashley et al. (2021) and

Rosenbaum (2017, pp. 289–290, fn. 15).

We denote by Ωs the set of all possible treatment assignments in set s, holding

fixed the observed number of treated units in that set. Formally, Ωs includes every

possible way the ns units in set s could be assigned to treatment and control such

that exactly ms units are treated. The number of possible assignments in Ωs is

denoted by |Ωs|, where the notation |·| indicates the number of elements in a set. This

quantity equals |Ωs| =
(

ns

ms

)
= ns!

ms!(ns−ms)! , where “!” denotes the factorial operator

(e.g., 4! = 4 × 3 × 2 × 1).

In the ssafrica.3 set, for example, there are 4 observations — 1 treated and 3

control — so |Ωs| for the ssafrica.3 set is
(

4
1

)
= 4. The corresponding set of possible

assignments with this treated count is shown in the table below.
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Assignment 1 Assignment 2 Assignment 3 Assignment 4
Burundi 0 0 0 1
Rwanda 0 0 1 0
Somalia 0 1 0 0
Lesotho 1 0 0 0

Table 2: All possible treatment assignments within matched set ssafrica.3, holding fixed
the observed number of treated units in that set.

The column labeled Assignment 3 shows the assignment that actually occurred. The

other possible assignments — Assignment 1, Assignment 2, and Assignment 4 —

represent cases in which Lesotho, Somalia, or Burundi is treated instead of Rwanda.

The set excludes any assignments with more than 1 treated unit.

The set of possible treatment assignments across all matched sets, given the number

treated in each, is Ω = Ω1 × . . . × ΩS, which is all the ways one assignment can

be chosen from each Ωs at the same time. Although the assignment itself can vary,

the underlying causal quantities of interest — τ and τ — remain fixed across all

possible assignments. What changes from one assignment to another is which potential

outcomes we would actually observe. In the observed Assignment 3, we see Rwanda’s

treated potential outcome and the control potential outcomes of Burundi, Somalia,

and Lesotho, but not Rwanda’s control potential outcome or the treated potential

outcomes of the others. Under a different assignment, a different set of treated and

control potential outcomes would have been observed. No matter which assignment

occurs, we observe only partial information about our causal targets.

Inference from the partial information contained in the data to our causal targets is

predicated on a probability distribution defined over the set of assignments, Ω. This

distribution constitutes the uncertainty underlying our inferences — what Fisher (1935,

p. 14) famously called the “reasoned basis” for inference — but, unlike in a randomized
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experiment, this distribution is unknown in an observational study. Because this

distribution is unknown, we must make assumptions about it when drawing inferences

from observational data. Under the assumption of as-if randomization, every possible

assignment within each Ωs is equally likely, making each overall assignment in Ω

equally likely as well. In this case, all individuals within the same matched set have

the same probability of treatment, equal to ms/ns. When as-if randomization does

not hold, however, assignments are no longer equally likely, and some individuals have

a higher probability of treatment than others.

2.3.1 How Do I Draw Inferences under the Sharp Framework?

To set the stage for inference under the sharp framework, consider a thought experiment.

Suppose we were to subtract the true individual effects from the outcomes of whichever

units happen to be treated. Doing so would yield, for each unit, the outcome it would

have had under control. In other words, we may imagine reconstructing the dataset so

that, under any possible treatment assignment, the outcomes would appear exactly as

they would have if no one had been treated. In this reconstructed world, there would

be no effect since every unit’s outcome would reflect what it would have been without

treatment.

Of course, we do not know the true collection of individual effects, τ , but we can

test hypotheses about it, such as the hypothesis of a homogeneous effect for all units,

denoted by τh. We do so by evaluating whether the data would look consistent with no

treatment effect when that hypothesized value is subtracted from the treated outcomes.

If, after this reconstruction, the data still show a positive effect, then the hypothesized

value is presumably too small; if they show a negative effect, then the hypothesized

value is presumably too large.
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From a hypothesis testing perspective, when outcomes are reconstructed under a null

hypothesis, the observed test statistic — computed on these reconstructed outcomes —

will tend to fall in the upper tail of the null distribution if the hypothesized effect is

too small, and in the lower tail if it is too large. To generate this null distribution,

we reconstruct the outcomes under the hypothesized effect. Under the null, these

reconstructed outcomes would remain fixed across assignments, so we hold them

constant and recalculate the test statistic for every possible assignment. We then

use this null distribution to determine where the observed test statistic falls for the

calculation of p-values.

A canonical choice of test statistic in this setting is a sum statistic, which first adds

up the treated outcomes within each set, and then adds those set-level sums across

all sets. Many familiar test statistics can be expressed in this form by applying to

the outcomes scale and shift transformations that do not depend on the treatment

assignments. One such useful test statistic that can be expressed as a sum statistic is

the Difference-in-Means, computed within sets and then averaged across sets, with

each set’s contribution weighted by its effective sample size.

Under as-if randomization, the harmonic-mean-weighted Difference-in-Means is useful

because, as discussed earlier, the variance of the within-set Difference-in-Means is

minimized — under homogeneous treatment effects — when the harmonic mean of

the numbers of treated and control units is largest. As a result, under this model of

homogeneous individual treatment effects, a test has greater power when it places

more weight on sets with large harmonic means — that is, sets in which the Difference-

in-Means is most informative. Weighting sets solely by their share of units, by

contrast, can overweight large but highly lopsided sets and dilute information from

more balanced comparisons.
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The harmonic-mean–weighted Difference-in-Means also has the practical advantage of

coinciding with two other common approaches to analyzing matched data:

• First, the harmonic-mean–weighted Difference-in-Means equals the coefficient

on the treatment indicator from a fixed-effects regression that includes matched

set indicators (Hansen and Bowers, 2008, pp. 228-229), an approach commonly

used in practice after matching.

• Second, the harmonic-mean–weighted Difference-in-Means coincides with the

overlap-weighted Difference-in-Means (Li et al., 2018) when overlap weights

are constructed using the treatment assignment probabilities implied by as-

if randomization. Overlap weights place the greatest weight on units with

intermediate values of these assignment probabilities and downweight units

with extreme values. In particular, using the assignment probability under as-if

randomization, control units are weighted by that probability, while treated units

are weighted by 1 minus that probability. Because these assignment probabilities

are constant within each matched set, the resulting overlap weights are constant

within treated units and within control units in a set, and they aggregate exactly

to the harmonic-mean weights implied by the matched sets.

To implement a sum statistic equivalent to the harmonic-mean–weighted Difference-

in-Means for hypothesis testing, we first reconstruct the outcomes that treated units

would have exhibited under the null hypothesis τh = 0.

# Keep only rows assigned to a matched set (drop NA in fm)
data_matched <- filter(.data = data, !is.na(fm))

# Null hypothesis value
tau_h <- 0

# Reconstruct outcomes under sharp null (tau_h = 0)
data_matched <- data_matched |>
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mutate(ldur_tilde = ldur - tau_h * UN)

We now source a helper function from the companion GitHub repository; this function

rescales the outcome variable so that the sum of the rescaled values among treated

units equals the harmonic-mean–weighted Difference-in-Means. After sourcing the

function, we apply it to the matched dataset to generate a new column containing the

rescaled outcomes. We then use this rescaled outcome to compute the observed test

statistic.

# Load the hm_stat_rescale() function from the GitHub repo
# Base_url (defined earlier as
# "https://raw.githubusercontent.com/tl2624/matching-guide/main")
# Points to the main GitHub repo URL
source(paste0(base_url, "/R/hm_stat_rescale.R"))

# Apply the rescaling function: adds a new column (.hm_scaled)
# And returns the full matched dataset with this rescaled outcome
data_matched <- hm_stat_rescale(

data = data_matched,
outcome = ldur_tilde, # Set outcome variable to be rescaled within matched sets
treat = UN, # Set name of treatment indicator variable
strata = fm # Set name of matched strata (block) variable

)

# Observed HM-weighted diff-in-means statistic
obs_stat <- sum(data_matched$ldur_tilde_hm_scaled[data_matched$UN == 1])

We can verify in R that this observed sum statistic coincides with the harmonic-

mean-weighted Difference-in-Means, the coefficient on the treatment indicator from a

fixed-effects regression that includes matched set indicators, and the overlap-weighted

Difference-in-Means constructed from the assignment probabilities implied by as-if

randomization.

First, we show that the observed sum statistic equals the harmonic-mean–weighted

average of the within–matched-set Differences-in-Means, where each matched set is

weighted by its contribution to the effective sample size.
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# Harmonic-mean–weighted difference in means (weights computed within sets)
dim_hm <- data_matched |>

group_by(fm) |>
summarize(

n_treated = sum(UN == 1),
n_control = sum(UN == 0),
# Within-set Difference-in-Means
dim_set = mean(ldur_tilde[UN == 1]) - mean(ldur_tilde[UN == 0]),
# Harmonic-mean weight (set's contribution to effective sample size)
w_hm = 2 * n_treated * n_control / (n_treated + n_control),
.groups = "drop" # Drop grouping after summarise

) |>
summarize(

# Harmonic-mean–weighted average of within-set Differences-in-Means
dim_hm = sum(w_hm * dim_set) / sum(w_hm)

) |>
pull(dim_hm) # Pull column out of data frame

# Approaches coincides with the sum statistic
all.equal(

dim_hm,
obs_stat

)

[1] TRUE

Next, we verify that the same quantity is obtained as the coefficient on the treatment

indicator from a fixed-effects regression that includes matched set indicators.

# Fixed-effects (FE) regression coefficient on UN (matched set indicators as
# FE)
fe_fit <- lm(formula = ldur_tilde ~ UN + fm, data = data_matched)

# Drop name so comparison is purely numeric
treat_coef_fe_fit <- unname(coef(fe_fit)["UN"])

# Approaches coincides with the sum statistic
all.equal(treat_coef_fe_fit, obs_stat)

[1] TRUE

Finally, we confirm that the observed sum statistic also coincides with the overlap-

weighted Difference-in-Means. The overlap weights are constructed from the treatment

assignment probabilities implied by as-if randomization within matched sets, with
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treated units weighted by one minus their treatment probability and control units

weighted by their treatment probability.

# Install "PSweight" package (only run if you don't already have it installed)
# install.packages("PSweight")
library(PSweight) # For overlap weights from Li et al (2018)

# Encode the treatment assignment probabilities implied by as-if randomization
# within matched sets: n_treated / n in each set
ps_fit <- PSmethod(

ps.formula = UN ~ factor(fm), # Reproduces n_treated / n in each set
method = "glm", # Estimate using generalized linear model
# Use as.data.frame() to drop tibble class for compatibility with PSmethod()
data = as.data.frame(data_matched),
ncate = 2 # Binary treatment (treated vs. control)

)

assign_prob <- ps_fit$e.h[, "1"] # Column corresponding to treatment level "1"

# Unit-level overlap weights implied by these treatment assignment probabilities
# Control units get weight equal to their treatment assignment probability
# Treated units get weight equal to one minus their treatment assignment probability
w_ow <- ifelse(

test = data_matched$UN == 1,
yes = 1 - assign_prob,
no = assign_prob

)

# Overlap-weighted difference in means
dim_ow <- data_matched |>

summarize( # Aggregate rows into summary values
# Overlap-weighted mean outcome for treated units
treated_weighted_mean =

sum(w_ow[UN == 1] * ldur_tilde[UN == 1]) / sum(w_ow[UN == 1]),

# Overlap-weighted mean outcome for control units
control_weighted_mean =

sum(w_ow[UN == 0] * ldur_tilde[UN == 0]) / sum(w_ow[UN == 0]),

# Difference between overlap-weighted treated and control means
dim_ow = treated_weighted_mean - control_weighted_mean

) |>
pull(dim_ow)

# Approaches coincides with the sum statistic
all.equal(

dim_ow,
obs_stat

)
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[1] TRUE

Now, to generate the distribution to which we refer our observed sum statistic, we

can hold the reconstructed and rescaled outcomes fixed and then calculate the sum

statistic over all possible assignments in Ω. In our application, with 12 sets ranging in

size from 2 to 5, the total number of assignments is 311,040.

# For each matched set (fm), record:
# n = total units in the set
# m = number treated (UN == 1)
block_ns <- data_matched |>

group_by(fm) |> # Group results by key variables
summarise( # Aggregate to one row per group

n = n(), # Row count per group
m = sum(UN),
.groups = "drop"

)

# Total possible treatment assignments = product of binomial coefficients
# (choose n_s units for treatment in each set and multiply across sets)
exact_n_assigns <- prod(choose(n = block_ns$n, k = block_ns$m))

Because our matched study is relatively small, we can enumerate all possible treatment

assignments exactly.

# Install "randomizr" (only run if not already installed)
# install.packages("randomizr")

# Load randomizr for generating random assignments
library(randomizr)

exact_assigns <- obtain_permutation_matrix(
declaration = declare_ra( # Declare assignment procedure

N = nrow(data_matched), # Total number of units
blocks = data_matched$fm, # Matched set membership
block_m = block_ns$m # Number treated in each set

),
# Total number of assignments with treated counts fixed within sets

maximum_permutations = exact_n_assigns
)
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However, in most applications, exactly enumerating all possible assignments is compu-

tationally infeasible. Instead, we typically draw a random subset of assignments (e.g.,

10,000) to approximate the exact randomization distribution, as illustrated below.

# Set RNG seed for reproducibility
set.seed(11242017)

# Generate permutation matrix of treatment assignments
# Each column = one possible assignment consistent with block structure
sim_assigns <- obtain_permutation_matrix(

declaration = declare_ra(
N = nrow(data_matched),
blocks = data_matched$fm,
block_m = block_ns$m

),
maximum_permutations = 10ˆ4 # Cap at 10,000 random draws

)

Now, to generate the null distribution of the sum statistic, we apply the statistic

to each of these 10,000 assignments while holding the reconstructed and rescaled

outcomes fixed under the null.

# Randomization distribution under sharp null of no effect:
# Apply sum statistic to each assignment column in 'sim_assigns'
# Outcome has been transformed so that
# Sum statistic = harmonic-mean weighted diff in means
sim_sharp_null_dist <- apply(

X = sim_assigns, # Matrix of treatment assignments
MARGIN = 2, # Iterate over columns (assignments)
FUN = function(x) {

# Sum transformed outcomes among treated
sum(data_matched$ldur_tilde_hm_scaled[x == 1])

}
)
# Faster equivalent computation via matrix multiplication
# as.numeric(t(data_matched$ldur_tilde_hm_scaled) %*% sim_assigns)

From this null distribution, we compute a one-sided upper p-value, which, under as-if

randomization, is simply the proportion of null test statistics greater than or equal to

the observed test statistic.

46



Building a Design-Based Matching Pipeline

# One-sided, upper p-value: proportion of simulated randomization stats >= observed
round(x = mean(sim_sharp_null_dist >= obs_stat), digits = 4)

[1] 0.0346

The upper p-value of a test of the sharp null of no effect against the alternative of a

larger effect is 0.0346.

In this particular case, unlike in most applications, the matched study is small enough

to compute the exact p-value and assess the accuracy of the simulation-based p-value

approximation.

# Transformed outcomes under sharp null (tau_h = 0)
q_tau_h_0 <- data_matched$ldur_tilde_hm_scaled

# Fast computation of exact null distribution using matrix multiplication
exact_sharp_null_dist <- as.numeric(t(q_tau_h_0) %*% exact_assigns)

# Slower apply()-based computation (for reference)
# apply(
# X = exact_assigns,
# MARGIN = 2,
# FUN = function(x) {
# sum(data_matched$ldur_tilde_hm_scaled[x == 1])
# }
#)

# Exact one-sided, upper p-value: proportion of randomization stats >= observed
round(x = mean(exact_sharp_null_dist >= obs_stat), digits = 4)

[1] 0.0363

The exact p-value of 0.0363 is nearly identical to the simulation-based p-value of 0.0346.

At the conventional significance level of α = 0.05, we would reject the null hypothesis

in favor of the alternative, regardless of whether we use the exact or simulation-based

p-value.

As an alternative to randomly sampling assignments and computing the test statistic

for each one, we can use a much faster Normal approximation to the null distribution
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when the matched study is sufficiently large. The approximation relies on closed-

form expressions for the expected value and variance of a sum statistic derived in

Rosenbaum and Krieger (1990). Using these expressions, we standardize the observed

test statistic and then compare it to the standard Normal distribution, which gives us

a corresponding p-value. Although primarily designed for sensitivity analyses under

violations of as-if randomization, the senstrat package can also be used to compute

the null expected value and variance of a sum statistic under as-if randomization.

# Install "senstrat" package (only run if you don't already have it installed)
# install.packages("senstrat")

# Load senstrat for computing stratum-level null expectations/variances
# (Rosenbaum & Krieger 1990) and later sensitivity analysis
library(senstrat)

# Compute per-block null expectations and variances
per_block_moms <- data_matched |>

group_by(fm) |>
summarize(

expect = ev(
sc = ldur_tilde_hm_scaled, # Transformed outcomes for the stratum
z = UN, # Treatment indicator
m = 1, # Number of "1"s in vector of hidden confounder

# Irrelevant here since Gamma = 1
g = 1, # Sensitivity parameter Gamma
method = "RK" # Use formula from Rosenbaum and Krieger (1990)

)$expect, # Null expectation of sum statistic in matched set
variance = ev(

sc = ldur_tilde_hm_scaled,
z = UN,
m = 1,
g = 1,
method = "RK"

)$vari, # Null variance of sum statistic in matched set
.groups = "drop"

)

# Sum across blocks to get overall null expectation and variance
null_ev <- sum(per_block_moms$expect)
null_var <- sum(per_block_moms$variance)

# Standardized test statistic and one-sided Normal p-value (upper tail)
norm_upper_p_value <- pnorm(

q = (obs_stat - null_ev) / sqrt(null_var), # Standardized statistic
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lower.tail = FALSE # Compute upper-tail probability
)
# By default in pnorm(): mean = 0 and sd = 1 (standard normal distribution)

This Normal-approximation p-value of 0.0343 is close to the exact and simulation-based

p-values of 0.0363 and 0.0346, respectively. All p-values lead to the same conclusion

in which we reject the sharp null of no effect in favor of a larger effect.

To test not just a single null hypothesis but a grid of null hypotheses under the sharp

null framework, we use a Normal approximation to the randomization distribution.

We repeat the above procedure for a range of hypothesized constant effects, τh. For

each value of τh, we reconstruct the outcomes under the null, rescale them so that

the sum statistic equals the harmonic-mean–weighted Difference-in-Means, compute

the observed test statistic, and obtain the corresponding p-value using the Normal

approximation. To form a one-sided confidence set, we retain all null values that are

not rejected by the upper-tail test at the chosen α level. To form a two-sided confidence

set, we proceed analogously, allocating α/2 to each tail — reflecting that each null

value is tested against departures in both directions — and using the corresponding

upper- and lower-tail rejection regions.

# Significance level
alpha <- 0.05

# Upper-tail confidence set (values of tau_h not rejected by the upper-tail test)
# The lower endpoint is the smallest null value tau_h for which the
# upper-tail p-value is still >= alpha; any smaller tau_h would be rejected.
cs_sharp_lower_one_sided <- c(

lower = obs_stat - qnorm(1 - alpha) * sqrt(null_var),
upper = Inf

)
# qnorm(1 - alpha): standard Normal critical value for upper one-sided test

cs_sharp_two_sided <- c(
lower = obs_stat - qnorm(1 - alpha / 2) * sqrt(null_var),
upper = obs_stat + qnorm(1 - alpha / 2) * sqrt(null_var)

)
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# At the lower endpoint, the upper-tail one-sided p-value equals alpha/2;
# any smaller null value would be rejected by the two-sided test
# At the upper endpoint, the lower-tail one-sided p-value equals alpha/2;
# any larger null value would be rejected by the two-sided test

An analogous procedure applies when constructing confidence sets without relying on

a Normal approximation, instead using a simulation-based approximation to the null

randomization distribution.

# Grid of constant-effect null values (sharp framework)
tau_h_grid <- seq(from = -0.02, to = 1.5, by = 0.0001)

# For each tau_h value, repeat the same randomization test calculation below;
# sapply() runs this repeatedly and stacks the resulting p-values together
p_mat <- sapply(X = tau_h_grid, FUN = function(tau_h) {

# Shift outcomes under null: ldur_i - tau_h * UN_i
dat_tau_h <- hm_stat_rescale(

# transform(): create copy of data_matched with shifted-outcome column
data = transform(data_matched,

ldur_tilde_shift = ldur - tau_h * UN),
outcome = ldur_tilde_shift,
treat = UN,
strata = fm

)

# Transformed outcomes under sharp null tau_h
q_tau_h <- dat_tau_h$ldur_tilde_shift_hm_scaled

# Observed statistic under null tau_h
obs_stat_tau_h <- sum(dat_tau_h$UN * q_tau_h)

# Randomization distribution via simulated assignments (defined above)
# Compute simulated null distribution via matrix multiplication,
# which is faster than looping over assignments (e.g., via apply())
sim_null_dist_tau_h <- as.numeric(t(q_tau_h) %*% sim_assigns)

# Upper-tail and lower-tail randomization p-values
p_upper_tau_h <- mean(sim_null_dist_tau_h >= obs_stat_tau_h)
p_lower_tau_h <- mean(sim_null_dist_tau_h <= obs_stat_tau_h)

c(upper_tail = p_upper_tau_h,
lower_tail = p_lower_tau_h)

})

# Extract vectors of p-values
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p_upper <- p_mat["upper_tail", ]
p_lower <- p_mat["lower_tail", ]

# Simulation-based confidence sets

# Upper-tail confidence set
# retain all tau_h with upper-tail p >= alpha
cs_sharp_upper_tail_sim <- tau_h_grid[p_upper >= alpha]

# Lower bound of the upper-tail confidence set
cs_sharp_upper_tail_sim_bound <- min(cs_sharp_upper_tail_sim)

# Two-sided confidence set (inversion using alpha/2 in each tail):
# retain tau_h only if neither one-sided test rejects at level alpha/2
cs_sharp_two_sided_sim <- tau_h_grid[

p_upper >= alpha / 2 &
p_lower >= alpha / 2

]

# Two-sided confidence set summarized by its bounds
cs_sharp_two_sided_sim_bounds <- c(

lower = min(cs_sharp_two_sided_sim),
upper = max(cs_sharp_two_sided_sim)

)

Likewise, for a point estimate, one could follow Hodges Jr. and Lehmann (1963) and

Rosenbaum (1993) by identifying the null value that makes the observed sum statistic

equal to its null expectation. With our test statistic under as-if randomization, this

would occur when the null equals the harmonic-mean weighted Difference-in-Means

computed from the observed outcomes (roughly 0.673), which yields a null expectation

of 0.

2.3.2 How Do I Draw Inferences under the Weak Framework?

When the target is the ATE, it can be written as τ = ∑S
s=1(ns/n)τs, a weighted

average of the set-level ATEs with weights equal to each set’s share of the total study

size. Thus, a straightforward way to estimate the ATE is to compute the Difference-in-

Means within each matched set, and then combine these set-level estimates using the
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same weights. Formally, the overall Difference-in-Means is τ̂ = ∑S
s=1(ns/n)τ̂s, where

τ̂s is the Difference-in-Means in set s.

These weights are appealing because, under as-if randomization, the resulting

Difference-in-Means is an unbiased estimator of the ATE. Formally, the expected

value of the estimator — i.e., the average of τ̂ taken over all treatment assignments

consistent with the matched design and their associated probabilities — equals the

true ATE. Nevertheless, although correct in expectation, the Difference-in-Means can

vary substantially across assignments. In any given assignment, the estimate may lie

far from the target ATE.

Because the estimator can fluctuate across different treatment assignments, it is

important to quantify the typical squared distance between an estimate and the true

ATE. To this end, Neyman (1923) introduced a canonical variance estimator. Under

as-if randomization, this estimator is exactly unbiased when individual treatment

effects are homogeneous; otherwise, it is conservative, meaning its expected value

is greater than or equal to the true variance of the Difference-in-Means, although

subsequent refinements reduce this conservativeness while maintaining validity (see

Robins, 1988; Aronow et al., 2014; Harshaw et al., 2024). In principle, we could

apply this approach by estimating the variance of the Difference-in-Means within each

matched set and then taking a weighted sum of these estimates (see, e.g., Miratrix

et al., 2013).

In our setting, however, this approach is infeasible because each matched set contains

only 1 treated or 1 control unit. The usual Neyman formula relies on computing sample

variances separately within the treated and control groups of each set. The sample

variance requires at least two observations because var() divides by the number of
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observations minus 1. As a result, we cannot compute the sample variance when there

is only a single treated or control unit.

How, then, can we estimate the variance of the Difference-in-Means in a matched

observational study? Pashley and Miratrix (2021) and Fogarty (2018) offer distinct

solutions. Pashley and Miratrix (2021) propose two approaches, each valid under

different conditions on the matched structure, while Fogarty (2018) develops a single

method that applies more broadly to finely stratified designs.

The first approach in Pashley and Miratrix (2021), hybrid_m, requires at least two

matched sets of each unique set size in the data. The second approach, hybrid_p,

permits variation in set sizes as long as no single set contains half or more of the total

study size. Our matched design meets the condition for the second approach, not the

first. We therefore estimate the variance using hybrid_p through the blkvar package,

the companion software for Pashley and Miratrix (2021).

# Install blkvar (only run if not already installed)
# install.packages("remotes")
# Remotes::install_github("lmiratrix/blkvar")

# Load blkvar for block randomization variance estimators
library(blkvar)

# Compute results with hybrid_p method
res <- block_estimator(

Yobs = ldur, # Observed outcomes
Z = UN, # Treatment indicator
B = fm, # Block (matched set) membership
data = data_matched, # Dataset
method = "hybrid_p" # variance estimation method

)

# Extract variance estimate
res$var_est

[1] 0.1187282
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We can also estimate the variance of the Difference-in-Means in a finely stratified

design using the approach of Fogarty (2018). To do so, we load a custom R function,

fine_strat_var_est(), from the companion GitHub repository.

# Load the fine_strat_var_est() function from the GitHub repo
source(paste0(base_url, "/R/fine_strat_var_est.R"))

The function takes as inputs the set-specific treatment effect estimates and the number

of units in each set, and it returns a single scalar representing the estimated variance.

We compute the set-specific estimates and corresponding set sizes, and then pass these

two vectors as inputs to fine_strat_var_est().

# Compute matched set sizes and matched-set-specific differences in means
set_stats <- data_matched |>

group_by(fm) |>
summarize(

n = n(), # Matched set size
diff_in_means = mean(ldur[UN == 1L]) - # Treated mean minus

mean(ldur[UN == 0L]), # control mean
.groups = "drop"

)

# Apply Fogarty (2018/2023) variance estimator
fine_strat_var_est(

strat_ns = set_stats$n, # Vector of stratum sizes
strat_ests = set_stats$diff_in_means # Vector of stratum estimates

)

[1] 0.1163934

This variance estimate is nearly identical to the one we obtained using the hybrid_p

approach of Pashley and Miratrix (2021).

Now that we have estimates of both the ATE and the variance of the ATE estimator,

we can form a standardized test statistic by subtracting the expected Difference-in-

Means implied by the null and dividing the result by the estimated standard error (the

square root of the estimated variance). We then compare this statistic to a standard
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Normal distribution to calculate p-values. Below, we calculate the upper one-sided

p-value for a test the null hypothesis that the ATE is 0 against the alternative that it

is positive.

pnorm(
q = (res$ATE_hat - 0) / sqrt(res$var_est),
lower.tail = FALSE

)

[1] 0.03722157

Here, we reject the weak null hypothesis that the ATE equals 0 in favor of the

alternative that the ATE is greater than 0, using the conventional significance level of

α = 0.05.

As in the construction of confidence sets for a homogeneous treatment effect under

the sharp framework, we form 95% confidence sets by inverting the corresponding

hypothesis tests. We first construct a one-sided confidence set obtained by inverting

the upper-tail test and retaining all null values that are not rejected at the α = 0.05

level. We then construct a two-sided confidence set by allocating α/2 = 0.025 to each

tail, as in the tail allocation used in the sharp null framework.

# One-sided (upper-tail) confidence set
cs_weak_upper_tail <- c(

lower = res$ATE_hat - qnorm(1 - alpha) * sqrt(res$var_est),
upper = Inf

)

# Two-sided confidence set
cs_weak_two_sided <- c(

lower = res$ATE_hat - qnorm(1 - alpha / 2) * sqrt(res$var_est),
upper = res$ATE_hat + qnorm(1 - alpha / 2) * sqrt(res$var_est)

)
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2.4 Part 3: Sensitivity Analysis (Departures from As-If Randomization)

Up to this point, we have supposed a framework in which each observation’s chance of

a UN intervention is like flipping a weighted coin. Each coin flip is independent across

observations, but the probability of landing tails (i.e., receiving treatment) can differ

from one unit to another depending on its baseline characteristics. With matching, we

make our crucial assumption that all units within a set are similar enough on these

characteristics that their coins have the same probability of landing tails.

This as-if randomization assumption may fail because of imbalances on hidden covari-

ates (or residual imbalances on observed covariates, though the sensitivity analysis

to follow subsumes both within the same framework). To represent such imbalances,

consider a single hidden covariate, u = (u11, . . . , uSnS
)⊤, indexed first by matched set

and then by unit within set, with each usi constrained to lie in the interval from 0

to 1. Although the restriction that each element of u is between 0 and 1 may seem

strong, Rosenbaum (2017, p. 300, fn. 33) shows that any departure from complete

random assignment within blocks can be represented by such a u in the sense that

as-if randomization would hold if we had access to and exactly matched on this u.

Rosenbaum (1987a) and Rosenbaum and Krieger (1990) then propose a model in

which each unit’s independent probability of treatment assignment is given by

(3) πsi =
exp

[
κs + log(Γ)usi

]
1 + exp

[
κs + log(Γ)usi

] .
The parameter κs is a set-specific intercept that captures the baseline propensity for

treatment shared by all units in matched set s before accounting for any differences in

the hidden covariate. In other words, κs reflects the central idea in matching that,

after forming matched sets homogeneous in observed covariates, all individuals within
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a set share the same treatment propensity based on those covariates. The parameter

Γ ≥ 1, by contrast, quantifies how strongly the hidden covariate usi can alter treatment

odds. When Γ = 1, all individuals in matched set s have the same probability of

treatment, exp[κs]/(1 + exp[κs]). However, when Γ > 1, two individuals in the same

set who differ in the hidden covariate may differ in their odds of treatment by as much

as a factor of Γ.

An important point to reiterate is that we condition on assignments that belong to

the set Ω, meaning that the number of treated units is fixed within each matched set.

It turns out that this conditioning removes dependence on the set-specific baseline κs

in the probability distribution over assignments in Ω (Rosenbaum, 1984). Eliminating

this dependence is crucial because it allows us to characterize both as-if randomization

and departures from it using just a single sensitivity parameter, Γ.

To build intuition for the sensitivity parameter Γ, note that the model in (3) implies

the following restriction:

(4) 1
Γ ≤

πsi

(
1 − πsj

)
πsj (1 − πsi)

≤ Γ for all i, j and s.

This restriction states that, within any set, no two units can differ in their odds of

treatment by more than a factor of Γ. When Γ = 1, all units share the same odds

of treatment, corresponding to as-if randomization. By contrast, larger values of Γ

represent increasingly severe departures from this assumption.

Rosenbaum (1995, pp. 1424–1425) shows that the converse also holds: The restriction

in (4) implies a model of the form in (3). For any collection of treatment probabilities

satisfying the bound in (4), it is always possible to find values of usi ∈ [0, 1] for all sets

s and units i, along with a scalar Γ ≥ 1, such that the two formulations yield the same
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probability distribution over assignments in Ω. In other words, (4) describes a general

restriction on treatment probabilities that does not assume a particular functional

form. The logistic model in (3), by contrast, provides one convenient parametric

representation of that general restriction.

Thus far, we have conducted inference assuming Γ = 1, meaning that all units within

a matched set share the same treatment probability. Under this as-if randomization

assumption, tests of sharp null hypotheses are exactly valid, while tests of weak null

hypotheses are valid in large studies. In both cases, validity means that the probability

of falsely rejecting the null hypothesis does not exceed the nominal level α.

When we allow departures from as-if randomization, governed by the sensitivity

parameter Γ ≥ 1, we seek new p-values that remain valid in the same sense. The

probability of a false rejection should not exceed α, regardless of the hidden covariate

u or the potential outcomes consistent with the null. The way we ensure this validity,

however, differs between the sharp and weak frameworks, which we consider in turn.

2.4.1 How Do Inferences under the Sharp Framework Change under

these Departures?

For a sharp null, if the hidden u were known, we could calculate from (3) the exact

distribution of assignments consistent with the matched design for any given value of

Γ ≥ 1. This distribution would provide the correct reference for computing p-values

under the null. In particular, the upper one-sided p-value could be obtained by

summing the probabilities of all assignments whose test statistic under the null is at

least as large as the observed statistic.

In practice, however, u is unknown. Thus, to ensure validity of our tests, we compute

p-values under the worst-case choice of u — the one that makes the p-value as large

58



Building a Design-Based Matching Pipeline

as possible. Rejection under the worst-case choice of u guarantees rejection under the

actual (but hidden) u. Consequently, we will not reject the null more often than we

would if the true assignment probabilities — governed by the actual but unobserved

u — were known under the model in (3).

Finding the Worst-Case Scenario of Hidden Confounding for Valid Inference

Actually finding this worst-case u is difficult. As a first step, Rosenbaum and Krieger

(1990) show that in the unmatched (i.e., two sample) case, the vector u that maximizes

the p-value under any fixed Γ ≥ 1 must belong to a restricted set of possibilities,

denoted by U+. Once the subjects are ordered from the largest to the smallest outcome,

all the candidate vectors in U+ look the same: a sequence of 1s at the top followed

by 0s below. We do not know how many 1s should precede the 0s, and this number

determines which configuration of u yields the worst-case p-value. In an unmatched

study, it is straightforward to enumerate all n − 1 such candidate vectors in U+, and

then identify which one yields the largest p-value for a fixed Γ ≥ 1.

Unfortunately, in matched designs, the overall worst-case vector u cannot be obtained

by simply stitching together the worst-case vectors from each matched set. That

is, the global worst-case is not just the collection of local worst-cases. Instead, U+

consists of ∏S
s=1(ns − 1) total candidate vectors for the worst-case u — a quantity that

quickly becomes infeasible to enumerate directly. For example, with only 20 matched

sets of 4 units each, the number of candidate vectors already exceeds 3.5 billion.

Separable Approximation To address this challenge, Gastwirth et al. (2000)

propose a practical shortcut called the separable approximation. The idea is to

select, within each matched set, the configuration us (from the set-specific candidate

sequences of 1s and 0s) that maximizes the expected value of the test statistic in
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that set under the null. If more than one candidate yields the same expectation, the

choice goes to the us that produces the larger variance of the test statistic in that set

under the null. The method is called “separable” because it then stitches together the

choices of us made separately within each matched set, rather than searching over all

possible combinations across sets. The resulting u may not give the exact worst-case

p-value; yet in designs with many small matched sets, the error is negligible.

Taylor Series Approximation The separable approximation is a useful shortcut,

but it can fail in designs with relatively few matched sets or with highly unbalanced

set sizes. In such cases, the u selected by the separable approximation may yield

p-values that are smaller than the true worst-case p-value. Rosenbaum (2018) therefore

introduces a refinement that guarantees valid inference.

The key idea is to reframe hypothesis testing in terms of a function that, for each

configuration of hidden confounding u ∈ U+, combines the gap between the null

expectation and the observed test statistic with a corresponding Normal critical buffer.

Concretely, for α = 0.05 and corresponding critical value 1.64, this function is the

expected value of the test statistic under (u, Γ) minus the observed test statistic, plus

1.64 times the standard deviation of the test statistic under (u, Γ). The function

is nonpositive exactly when the observed test statistic lies at least 1.64 standard

deviations above its null expectation, and positive otherwise. Therefore, the null

hypothesis is rejected if and only if this function is nonpositive.

We can code this function in R as follows.

# Rosenbaum (2018) objective: expectation minus observed plus kappa times SD
# Nonpositive values imply rejection at level alpha
sens_objective <- function(null_expect, null_variance, obs_stat, alpha = 0.05) {

# null_expect : overall null expectation of the test statistic
# null_variance : overall null variance of the test statistic obs_stat :
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# observed value of the test statistic alpha : test size (e.g., 0.05 gives
# kappa about 1.64)

kappa <- qnorm(1 - alpha) # Normal critical value
null_sd <- sqrt(null_variance) # Null standard deviation

# Gap between null expectation and observed statistic (null_expect -
# obs_stat), plus Normal buffer (kappa * null_sd)
obj_val <- (null_expect - obs_stat) + kappa * null_sd

return(obj_val)
}

To build intuition, we next evaluate this function at Γ = 1.

# Evaluate under Gamma = 1 using null_ev, null_var, and obs_stat defined earlier
sens_objective(

null_expect = null_ev,
null_variance = null_var,
obs_stat = obs_stat,
alpha = 0.05

)

[1] -0.06500212

The resulting value is negative, indicating rejection of the null at the chosen significance

level. This is exactly what we would expect: Because we previously rejected the sharp

null hypothesis that τh = 0 for all units at Γ = 1, the function evaluated at Γ = 1 is

indeed nonpositive.

The crucial property of this function is that it is concave over U+, which means

that a tangent line drawn at any u ∈ U+ lies above the function everywhere on U+.

Rosenbaum (2018) draws the tangent line at the configuration of u chosen by the

separable approximation. Because the original function is concave, this tangent line

provides a global upper bound on the function for all candidate configurations of

hidden confounding. If this upper bound is nonpositive, then the function itself must

also be nonpositive. Consequently, rather than maximizing a curved function over U+,

we can instead maximize a linear function, which greatly simplifies the optimization.
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Straight lines are easy to work with because they decompose additively across matched

sets. We can therefore determine, within each stratum separately, which hidden-bias

pattern makes the tangent line as large as possible, and then add up these stratum-

specific contributions. The resulting sum is the maximum value of the tangent line

over all u ∈ U+.

Recalling that the original function is concave, if the maximum value of the tangent-

line approximation over u ∈ U+ is at or below zero, then the original function itself

must be nonpositive for every u ∈ U+. Therefore, we can safely base the decision to

reject the null hypothesis or not on the Taylor approximation. Although valid, this

procedure can be conservative: The tangent line may remain above zero even when

the original function would be below zero at its true worst-case u. By contrast, the

separable approximation can be liberal, as it may reject even when the worst-case

value of the function is positive.

Conducting Worst-Case Sensitivity Analysis Below we report the upper one-

sided p-value obtained under the separable approximation, along with an indication of

whether the resulting decision to reject or not reject the null hypothesis agrees with

the decision implied by the Taylor series approximation. Agreement or disagreement

between the two methods is determined by the sign of the Taylor-series–based bound

on the function described above that governs rejection of the null hypothesis. Dis-

agreement can occur only when the separable approximation yields a p-value slightly

below α, indicating rejection, while the Taylor series approximation yields a positive

value, leading to non-rejection.

# Grid of Gamma values
Gamma_vals <- seq(from = 1, to = 1.5, by = 0.0001)

# Iterate over the Gamma_vals grid using lapply(): perform the sensitivity
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# analysis at each Gamma and return a list of per-Gamma result objects
sens_results <- lapply(

X = Gamma_vals,
FUN = function(g) {

out <- senstrat(
sc = data_matched$ldur_tilde_hm_scaled, # outcome
z = data_matched$UN, # treatment indicator
st = data_matched$fm, # matched set
gamma = g, # Gamma
alternative = "greater", # upper one-sided test
detail = TRUE # return intermediate quantities used in the computations

)

# Separable p-value
p_sep <- as.numeric(out$Separable["P-value"])

# Taylor series margin (cvA)
cvA <- as.numeric(out$lambda["Linear Taylor bound"])

# Decisions
sep_reject <- p_sep <= alpha # separable rejects?
tay_reject <- cvA <= 0 # Taylor rejects?

# Store results for this value of Gamma
data.frame(

Gamma = g, # sensitivity parameter
p_sep = p_sep, # separable p-value
cvA = cvA, # Taylor bound
agree_tay = (sep_reject == tay_reject) # agreement indicator

)
}

)

# Bind into a single data frame
sens_df <- do.call(rbind, sens_results)

# Smallest Gamma where the separable p-value is >= alpha
sens_value_sep <- min(sens_df$Gamma[sens_df$p_sep >= alpha])

# Taylor series sensitivity value:
# smallest Gamma at which Taylor margin becomes positive (non-rejection)
sens_value_tay <- min(sens_df$Gamma[sens_df$cvA > 0])

For this matched dataset, the conclusions from the separable and Taylor series

approximations agree for nearly all values of Γ, differing over only a narrow interval

from 1.1361 to 1.1399. As these results indicate, we can reject the sharp null of no effect

under as-if randomization (i.e., Γ = 1), but this conclusion is sensitive to departures
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from that assumption. Using the more conservative Taylor series approximation, we

can no longer reject the sharp null of no effect against the alternative of a larger effect

at the α = 0.05 level once Γ reaches approximately 1.14.

The plot below illustrates this comparison and clarifies how the two approaches relate

across values of Γ.

Taylor series margin

Separable p−value
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Figure 3: Sensitivity analysis for the sharp null of no individual treatment effect for all
units. The top panel shows upper one-sided p-values under the separable approximation
across values of Γ; the bottom panel reports, across the same values of Γ, the corresponding
Taylor series margin, with the zero line marking the rejection boundary. The shaded vertical
band highlights values of Γ for which the separable approximation and the Taylor series
approximation lead to different rejection decisions.

Zooming in on the shaded vertical band — corresponding to values of Γ for which

the two approaches yield different conclusions (between 1.1361 to 1.1399) — shows

that the two methods diverge in exactly the way one would expect. Over this range
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of Γ values, the Taylor series margin lies just above zero, indicating no rejection of

the sharp null, while the separable approximation yields p-values just below 0.05,

indicating rejection. This pattern reflects the relative conservatism of the Taylor series

approximation: Rejection under the Taylor series approach implies rejection under

the separable approach, but not vice versa.

Both approaches to sensitivity analysis rely on multiple approximations. For example,

the separable approximation is used to approximate the worst-case configuration of

hidden bias u ∈ U+, and inference additionally relies on a Normal approximation to

the null randomization distribution of the test statistic. If the exact randomization dis-

tribution were used instead, the resulting sensitivity conclusions could differ for certain

values of Γ. In principle, one could also assess sensitivity at a given Γ using the exact

randomization distribution by fixing a configuration of hidden bias u — for example,

the separable choice — and deriving, from (3), the implied probability distribution on

Ω, which can then be combined with the previously defined exact_sharp_null_dist

to compute the corresponding p-value.

2.4.2 How Do Inferences under the Weak Framework Change under

these Departures?

Compared to tests of the sharp null hypothesis of no effect, constructing valid tests of an

analogous weak null hypothesis is more challenging. A sharp null hypothesis specifies

all missing potential outcomes, so we need only consider p-values over configurations

of u ∈ U+, rather than also over multiple configurations of potential outcomes. By

contrast, a weak null permits many possible configurations of potential outcomes, so

identifying the worst-case p-value requires optimization over both u and the potential

outcomes consistent with the null. This joint optimization is computationally tractable
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only in restricted settings, such as those with binary outcomes (Fogarty et al., 2017)

or matched-pair designs (Fogarty, 2020).

A more generally applicable approach is proposed by Fogarty (2023), which avoids the

need for an explicit search for the worst-case p-value over all configurations of u and

potential outcomes consistent with the null hypothesis about τ . To build intuition for

this approach, note that the following inverse probability weighted (IPW) version of

the Difference-in-Means is unbiased for the ATE, τ :

S∑
s=1

(ns/n)
(

1
|Ωs|

)(
τ̂s

p(zs)

)
,(5)

where p(zs) denotes the probability of assignment zs among all treatment assignments

in set s that hold fixed the realized number of treated units, with |Ωs| denoting, as

defined earlier, the total number of such assignments. Both τ̂s and p(zs) are evaluated

at the same realized treatment assignment zs within matched set s. In other words,

p(zs) denotes the probability of the assignment under which the treated and control

outcomes in set s — and hence the Difference-in-Means τ̂s — aree realized.

When Γ = 1, this probability p(zs) is 1/|Ωs|, and the IPW Difference-in-Means reduces

to the usual unweighted Difference-in-Means, τ̂ . When Γ > 1, however, p(zs) is no

longer known exactly. In matched designs that may include sets with a single treated

unit and many controls as well as sets with a single control unit and many treated

units, Γ restricts the assignment probability to lie within bounds consistent with the

specified degree of departure from as-if randomization:

1
Γ(ns − 1) + 1 ≤ p(zs) ≤ Γ

(ns − 1) + Γ ,(6)

for all zs ∈ Ωs and for all matched sets s.
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Since the IPW Difference-in-Means in (5) cannot be directly computed when Γ > 1,

Fogarty (2023) instead uses the bounds in (6) to construct a worst-case version of this

IPW Difference-in-Means. For tests of a null hypothesis about the overall ATE across

all matched sets, this worst-case procedure replaces p(zs) with the upper bound from

(6) whenever τ̂s is greater than or equal to the null value of the overall ATE, and

with the lower bound whenever τ̂s is less than that null value. When testing the null

against a smaller alternative, the procedure reverses these substitutions.

To see the value of this procedure, consider testing a null hypothesis about the ATE

against the alternative of a larger ATE. Fogarty (2023) shows that, for any Γ ≥ 1, the

expected value of this worst-case IPW Difference-in-Means — defined under whatever

the true distribution on Ω consistent with that Γ happens to be — is always less than

or equal to the null when it is true. Conversely, when testing against the alternative

of a smaller ATE, this expectation is greater than or equal to the null when it is true.

Importantly, these properties hold for all possible values of u and all configurations of

potential outcomes that are consistent with the null hypothesis.

How does this property of the expected value ensures a valid test in sufficiently

large studies? Sticking to the case of testing against a larger ATE, the intuition is

straightforward: If the expected value of the worst-case IPW Difference-in-Means is less

than or equal to the null when it is true, then the worst-case IPW Difference-in-Means

tends to fall at or below the null rather than above it. In other words, the procedure

intentionally “tilts” the worst-case IPW Difference-in-Means in the direction opposite

the alternative, making the procedure conservative.

In addition to this property of the expected value, a second key ingredient for valid

hypothesis testing concerns variance estimation. For any fixed Γ ≥ 1, an analogue of

the variance estimator from Fogarty (2018) (discussed above) consistently overestimates
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(or bounds above) the true variance of the worst-case IPW Difference-in-Means. As a

result, using this variance estimator further reduces the magnitude of the standardized

test statistic — the worst-case IPW Difference-in-Means minus the null ATE, divided

by the square root of the estimated variance — relative to what would be obtained

using the true (but unknown) variance.

Together, these two properties work in the same direction:

• The expected value is at or below the null, keeping the center of the distribution

at or shifted away from the upper tail, and

• the variance estimate tends to be too large, which pulls the standardized statistic

closer to zero.

As a result, when the null is true, the probability that the standardized statistic falls

in the upper tail of the standard Normal distribution — that is, the probability of

falsely rejecting the null — remains at or below the nominal significance level. Hence,

the test is conservative (valid) in large studies. Analogous reasoning applies when

testing against the alternative of a smaller effect: When the null hypothesis is true, the

probability that the standardized value falls in the lower tail of the standard Normal

distribution also stays at or below the nominal significance level.

To implement this approach from Fogarty (2023), we first source from the GitHub

repository an R function that, for a fixed Γ ≥ 1, computes the worst-case IPW

Difference-in-Means for a single matched set.

# Load the worst_case_IPW() function from the GitHub repo
source(paste0(base_url, "/R/worst_case_IPW.R"))

We now use this function to calculate the worst-case IPW version of the Difference-

in-Means within each matched set. To form the overall statistic, we average the
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set-specific values using weights equal to each set’s contribution to the total number

of units. Finally, we center the worst-case IPW Difference-in-Means by the null ATE,

standardize this difference using the conservative variance estimator from Fogarty

(2018), and compare the resulting standardized test statistic to the standard Normal

distribution to obtain p-values.

# One-sided sensitivity analysis for the weak null (ATE = 0)

# Null and alternative for the weak-null test
null_ATE <- 0 # Null: ATE = 0
alternative <- "greater" # Alt: ATE > 0 (upper-tail test)

# Data frame to store results for each Gamma
weak_sens_df <- data.frame(

Gamma = Gamma_vals,
p_value = NA_real_

)

for (g in Gamma_vals) { # Loop over Gamma values

# Worst-case IPW estimate within each matched set at Gamma = g
set_stats <- data_matched |>

group_by(fm) |>
summarise(

n = n(), # Set size n_s
weight = n / nrow(data_matched), # Weight n_s / n
est = worst_case_IPW( # Worst-case IPW in set s

z = UN, # Treatment indicator
y = ldur, # Outcome
Gamma = g, # Sensitivity parameter (Gamma)
tau_h = null_ATE, # Weak null: ATE = 0
alternative = alternative # Direction of alternative

),
.groups = "drop"

)

# Overall worst-case IPW statistic (weighted average across sets)
wc_ipw_stat <- sum(set_stats$weight * set_stats$est)

# Variance estimate for the worst-case IPW statistic
var_hat <- fine_strat_var_est(

strat_ns = set_stats$n,
strat_ests = set_stats$est

)

# Standardized worst-case IPW statistic, centered at the null
se_hat <- sqrt(var_hat)

69



Leavitt and Miratrix

std_stat <- (wc_ipw_stat - null_ATE) / se_hat

# One-sided p-value, determined by the alternative
if (alternative == "greater") {

# Upper-tail test: ATE > 0
p_val <- 1 - pnorm(std_stat)

} else if (alternative == "less") {
# Lower-tail test: ATE < 0
p_val <- pnorm(std_stat)

} else {
stop("Only one-sided alternatives ('greater' or 'less') are handled here.")

}

# Store result for this Gamma
weak_sens_df$p_value[weak_sens_df$Gamma == g] <- p_val

}

# Sensitivity value: smallest Gamma at which the one-sided test no longer rejects
weak_sens_value <- min(weak_sens_df$Gamma[weak_sens_df$p_value >= alpha])

Below, we plot the upper one-sided p-values corresponding to Γ values from 1 to 1.5.
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Figure 4: One-sided upper p-values for the weak null hypothesis of zero average effect
across values of the sensitivity parameter Γ.

Under as-if randomization (Γ = 1), we find evidence of a positive average effect.

This conclusion about the weak null is slightly more robust to departures from as-if

randomization than our earlier rejection of the sharp null of no effect at Γ = 1.

However, in absolute terms, the evidence for a positive ATE remains sensitive. Our

qualitative conclusion about the null hypothesis that the ATE equals zero changes

once Γ reaches 1.1756.

It is important to emphasize that this sensitivity analysis guarantees validity across

all configurations of potential outcomes consistent with the weak null. By contrast,

Fogarty (2023) also describes an alternative sensitivity analysis that restricts attention

to subsets of configurations that researchers may regard as more plausible. Such
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alternatives can produce smaller p-values, but at the cost of forfeiting validity for

certain (possibly unrealistic) potential outcome configurations.

3. Conclusion

We have now completed the full matching pipeline. We began by constructing matched

sets and then conducted inference under the as-if randomization assumption, treating

the matched design as a collection of completely randomized experiments within blocks.

We examined inference under both sharp and weak null frameworks — corresponding,

respectively, to unit-level causal effects and average effects — and then assessed

the sensitivity of these inferences to potential violations of the as-if randomization

assumption. The embedded code, accompanied by extensive comments and illustrated

through the running example from Gilligan and Sergenti (2008), is intended to be

readily adapted by practitioners to their own datasets.

3.1 Limitations and Related Topics Beyond Our Scope

For clarity and focus, we have excluded several important topics, though we have

pointed to relevant references where appropriate. Some of these omissions are not

specific to matching or observational studies. In particular, we have not addressed

imperfect compliance with treatment assignment, missing outcomes, clustered (rather

than individual-level) assignment, or interference settings in which a subject’s outcome

depends on others’ treatment assignments.

Our analysis has focused on inference for two causal targets only: a constant, additive

treatment effect and the average treatment effect. We have not considered alternative

effect models, such as dilated effects (Rosenbaum, 1999), multiplicative effects, or

Tobit effects (Rosenbaum, 2010, pp. 46–49). Throughout, we have treated causal
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targets as fixed quantities (over the set of treatment assignments consistent with the

matched design), rather than as random variables. As a result, we have excluded

attributable effects (Rosenbaum, 2001, 2003; Hansen and Bowers, 2009) and the

average treatment effect on the treated (Sekhon and Shem-Tov, 2021). We have also

set aside methods for joint inference on sharp and weak causal hypotheses (Ding, 2017;

Wu and Ding, 2021; Cohen and Fogarty, 2022), as well as strategies that improve the

power of hypothesis tests by rescaling outcomes or choosing alternative test statistics,

including regression-assisted approaches (Lin, 2013; Cohen and Fogarty, 2023; Guo

and Basse, 2023).

Several omissions are specific to matching methodology itself:

• First, we have not covered a range of alternative matching and balancing

approaches, including nonbipartite matching for multivalued treatments (Lu

et al., 2001, 2011; Rosenbaum, 2010, pp. 207–221), template matching (Silber

et al., 2014), multilevel matching (Zubizarreta and Keele, 2017; Pimentel et al.,

2018), risk-set matching (Li et al., 2001), cardinality matching (Zubizarreta

et al., 2014), coarsened exact matching (Iacus et al., 2012), exterior matching

(Rosenbaum and Silber, 2013), or generalized full matching (Sävje et al., 2021),

among others. We have further assumed that researchers specify ex ante the set

of covariates to be balanced, thereby excluding screening procedures that identify

additional covariates for adjustment based on observed imbalances (Cochran,

1965), as in tapered matching approaches (Daniel et al., 2008; Yu et al., 2021).

Finally, we have not considered balance constraints such as fine and near-fine

balance (Rosenbaum et al., 2007; Yang et al., 2012; Yu, 2023; Pimentel et al.,

2015a,b), which enforce exact or nearly exact equality of covariate distributions.
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• Second, we have not discussed the use of prognostic covariates identified using

pilot or external data. Such approaches can substantially improve efficiency by

prioritizing covariates that strongly predict potential outcomes. For theoretical

foundations, see Hansen (2008a), with complementary theoretical results and

practical insights in Sales et al. (2018).

• Third, we have considered only matching strategies aimed at justifying as-if

randomization, not those designed explicitly to improve design sensitivity —

that is, robustness to moderate violations of as-if randomization (see Rosenbaum,

2010, Part III, pp. 257-311). Beyond match construction, researchers can also

enhance design sensitivity by selecting particular test statistics, among other

strategies (Rosenbaum, 2004; Heller et al., 2009; Hsu et al., 2013; Small et al.,

2013).

• Fourth, we have excluded extensions to covariate balance testing beyond

the framework developed in Hansen and Bowers (2008), including subsequent

contributions by Gagnon-Bartsch and Shem-Tov (2019) and Branson (2021), as

well as related approaches based on the stepwise intersection–union principle

(Hansen and Sales, 2015).

• Fifth, we have ignored residual imbalance on observed covariates. Specifi-

cally, we have proceeded under the assumption that matched set membership can

justify as-if randomization, even when small imbalances remain within matched

sets. Under this approach, concerns about residual imbalance are absorbed into

the sensitivity analysis for hidden bias. This approach is not entirely satisfying,

however, because imbalances on observed covariates are not, in fact, hidden.

Several methods therefore address such imbalances directly, either in approaches
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targeting individual effects (Rosenbaum, 1988; Pimentel and Huang, 2024; Chen

et al., 2023; Heng et al., 2025) or average effects (Zhu et al., 2025).

• Sixth, we have not incorporated into the overall pipeline an explicit approach for

defining an interpretable study population in matched designs. Common

practice excludes units based on limited overlap in the estimated propensity

score (Crump et al., 2009; King and Zeng, 2006), but study populations defined

in this way can be difficult to characterize substantively. Hence, alternative

approaches define the study population directly in terms of a small number of

covariates. For example, Traskin and Small (2011) use a classification tree to

define a study population that approximates one defined by trimming on the

estimated propensity score, while Fogarty et al. (2016) use discrete optimization

to define a maximal, rectangular region of covariate space with adequate overlap

on key covariates.

• Seventh, we have not considered quasi-experimental devices (Campbell, 1957;

Campbell and Stanley, 1963; Shadish et al., 2002), specifically how matched

designs can leverage such devices (see Rosenbaum, 2025, Section IV). Two promi-

nent quasi-experimental devices include an additional control group (Rosenbaum,

1987b) and outcomes with known effects (Rosenbaum, 1989), each of which has

a range of valuable applications. In the context of evidence factors (Rosenbaum,

2021), one use of a second control group is to yield stronger causal evidence

that is less susceptible to hidden confounding (Rosenbaum, 2023a). For known

effects, one illustrative use is to support tests for hidden confounding that in-

form sensitivity analyses by ruling out certain violations of as-if randomization

(Rosenbaum, 2023b).
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• Eighth and finally, we have not addressed settings in which matched set mem-

bership itself may depend on the treatment assignments — that is, settings

with Z-dependence (Pashley et al., 2021; Pimentel and Huang, 2024; Pimentel

and Yu, 2024). Our exposition has relied on an analogy to Rubin’s framework

of “assignment to treatment on the basis of a covariate” (Rubin, 1977), where

matched set membership plays the role of the covariate. This analogy treats

set membership as fixed, but in practice membership can be random when the

realized treatment assignment — determined prior to matching — induces the

matched structure, implying that the structure may vary across possible assign-

ments. We have set aside this issue, which may be minor when practitioners

use sufficiently tight calipers for matching (a point we thank Professor Samuel

Pimentel for emphasizing in helpful discussions).

Despite these limitations, the pipeline and design-based perspective developed here

provide a coherent framework for understanding how matched designs support causal

inference. The emphasis on design-based foundations clarifies the logic underlying the

construction of matched sets and the subsequent steps of inference and sensitivity

analysis under both weak and sharp frameworks. We present this work not as

exhaustive, but as a foundation on which researchers can build when incorporating

more specialized methods tailored to their substantive and inferential goals.
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