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To investigate causal impacts, many researchers use controlled pre-post
designs that compare over-time differences between a population exposed to a
policy change and an unexposed comparison group. However, researchers us-
ing these designs often disagree about the “correct” specification of the causal
model, perhaps most notably in analyses to identify the effects of gun poli-
cies on crime. To help settle these model specification debates, we propose a
general identification framework that unifies a variety of models researchers
use in practice. In this framework, which nests “brand name” designs like
difference-in-differences as special cases, we use models to predict untreated
outcomes and then correct the treated group’s predictions using the compar-
ison group’s observable prediction errors. Our point identifying assumption
is that treated and comparison groups would have equal prediction errors (in
expectation) under no treatment. To choose among candidate models, we pro-
pose a data-driven procedure based on models’ robustness to violations of this
point identifying assumption. Our selection procedure averages over candi-
date models, weighting by each model’s posterior probability of being the
most robust, given its differential average prediction errors in the pre-period.
This approach offers a way out of debates over the “correct” model by choos-
ing on robustness instead and has the desirable property of being feasible in
the “locked box” of preintervention data only. We apply our methodology to
the gun policy debate, focusing specifically on Missouri’s 2007 repeal of its
permit-to-purchase law, and provide an R package (apm) for implementation.

1. Introduction. The causal effects of public policies are the subject of intense debate.
For instance, the question of whether guns make society more or less safe permeates the
gun control debate, with opposite sides claiming that policies expanding firearms access ei-
ther reduce or increase crime. To bring evidence to bear on this debate, we can contrast
the change in a relevant outcome (such as gun homicides) after a policy intervention to the
contemporaneous change in outcomes among an unexposed comparison population. These
“controlled pre-post” designs identify policy effects if their assumptions hold. For example,
difference-in-differences (DID) depends on parallel trends, sequential DID depends on paral-
lel trends-in-trends and comparative interrupted time series (CITS) depends on assumptions
about group differences in slopes and intercepts of a linear model.

To choose among controlled pre-post designs, conventional wisdom holds that we should
choose the one that relies on the most plausible assumptions (Roth and Sant’Anna (2023),
Lopez Bernal, Soumerai and Gasparrini (2018), Ryan, Burgess and Dimick (2015), Kahn-
Lang and Lang (2020)). Because reasonable people may disagree about plausibility and be-
cause it is impossible to prove any causal assumption, researchers tend to use methods that
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are popular in their disciplines. For instance, CITS is popular in education policy, while DID
is popular in health policy (Fry and Hatfield (2021)).

Disagreement over causal assumptions and attendant modeling choices is not merely aca-
demic; it can impede progress on the policy front. On the firearm policy question, a 2004
report by the National Research Council concluded that “it is not possible to reach any scien-
tifically supported conclusion because of the sensitivity of the empirical results to seemingly
minor changes in model specification” National Research Council of the National Academies
(2005), page 151. More recent syntheses have reached similar conclusions (Morral et al.
(2018), Smart et al. (2020)).

In this paper we consider the impact of a particular firearm policy change: Missouri’s 2007
repeal of its permit-to-purchase law; see Figure 1 below. Previous authors have analyzed this
policy change using models with different causal assumptions: Webster, Crifasi and Vernick
(2014) fit a Poisson regression model with unit and time fixed effects, while Hasegawa, Web-
ster and Small (2019) used a nonparametric DID estimator. How, in general, can we reconcile
competing models, assumptions, and possible conclusions?

We provide a general identification framework that unifies controlled pre-post designs by
characterizing them as a combination of a prediction step and a correction step. First, for an
arbitrary model in a class of candidate models, we use observations in the preintervention pe-
riod to train a model that predicts untreated outcomes in the postintervention period. Second,
we use the comparison group’s prediction errors in the postintervention period to correct the
treated group’s predictions; this step accounts for time-varying shocks that affect both groups.
Our point identifying assumption is that prediction errors would be equal (in expectation) in
treated and comparison groups, absent the policy change. We show that we can reproduce
many familiar “brand name” designs by careful choice of prediction model. For instance, we
get DID when we use the preintervention group mean as a (simple) prediction model.

To choose among a set of candidate models—unified under a single identification
framework—we move away from the question of model “correctness” and focus on another

FIG. 1. Average gun homicides (rate per 100,000) before and after the 2007 permit-to-purchase repeal in Mis-
souri (treated state) and eight neighboring states without such a change (Arkansas, Illinois, Iowa, Kansas, Ken-
tucky, Nebraska, Oklahoma and Tennessee).
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criterion: robustness. To select the most robust model given differential average prediction
errors in the preperiod, we use Bayesian model averaging (BMA) in which we weight each
model by its posterior probability of being the most robust, hence the name averaged predic-
tion models (or APM). Using the corrected predictions from our averaged model, we estimate
our causal target quantity, the average effect of treatment on the treated (the ATT). Since this
model selection procedure based on robustness uses only preperiod observations, it has the
benefit of inhibiting “fishing,” whereby researchers select the model that yields the most
desirable conclusion about the ATT in the postperiod.

Our conception of robustness builds on Manski and Pepper (2018) and Rambachan and
Roth (2023) who formalize an idea implicit in preperiod parallel trends tests (Granger (1969),
Angrist and Pischke (2008), Roth (2022), Egami and Yamauchi (2023)): Departures from the
assumed causal model in the preperiod inform us about violations in the postperiod. Since the
true relationship between untreated outcomes in the two periods is unknown, these sensitivity
analyses take observed departures in the preperiod and assume a relationship to departures
in the postperiod. Robustness is a (lack of) change in the estimand under departures from the
point identifying assumption.

Other authors have also developed methods for causal inference from longitudinal data
and applied them to study gun/policing policies and violence/crime outcomes. With a similar
focus on prediction models, Antonelli and Beck (2023) use Bayesian spatiotemporal models
to produce posterior predictive distributions for unit-specific treatment effects in a staggered
adoption setting. Ben-Michael et al. (2023) use multitask Gaussian process models to draw
causal inferences from panel data with one treated unit and count outcomes, contributing to
the literature on synthetic controls. We build on these existing approaches via a Bayesian
model selection procedure that is guided by an anticipated sensitivity analysis. Our method-
ology, therefore, joins recent research that applies ideas from design sensitivity (Rosenbaum
(2004); see also Heller, Rosenbaum and Small (2009), Hsu, Small and Rosenbaum (2013),
Small et al. (2013)) to settings other than those of matched observational studies (Huang,
Soriano and Pimentel (2024)).

In the rest of this paper, we elaborate on our approach to controlled pre-post designs ap-
plied to gun policy evaluation. Section 2 details our general identification strategy and es-
tablishes that the assumptions of some popular designs can be considered special cases of
our framework. In Section 3 we introduce a sensitivity analysis framework that motivates our
model selection procedure. Section 4 describes our proposed estimation and inference pro-
cedures. We implement our methods to estimate the effect of Missouri’s permit-to-purchase
repeal on gun homicides in Section 5. Finally, we conclude in Section 6 and point to open
questions for future research.

2. General identification strategy. Suppose a population-level data generating process
with two groups, a treated group (G = 1) and comparison group (G = 0) as well t = 1, . . . , T

periods of which T is the only posttreatment period. That is, between periods T − 1 and T ,
the treated group is exposed to treatment and the comparison group is not. Let the treatment
indicator in period t be Zt := G1{t = T }, where 1{·} is the indicator function that equals 1 if
its argument is true and 0 if not. For the treated group, Zt = 0 for all t < T and ZT = 1. For
the comparison group, Zt = 0 for all periods.

We use potential outcomes to define our causal target. Let Yt (0) denote the untreated po-
tential outcome in period t = 1, . . . , T and YT (1) denote the treated potential outcome in the
posttreatment period, T . Our causal target is the ATT,

ATT := E𝒫
[︁
YT (1) − YT (0)|G = 1

]︁
,(1)

where E𝒫 [·] denotes expectation with respect to a population-level joint cumulative distribu-
tion function.
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To express the ATT in terms we can estimate from data, we need assumptions about how
potential outcomes relate to observable quantities. The first such assumption is consistency
between potential outcomes and the observed outcome, Yt .

ASSUMPTION 1 (Consistency). For t = 1, . . . , T ,

(2) Yt = ZtYt (1) + (1 − Zt)Yt (0).

Assumption 1 ensures that the observed outcome at a given time is the potential outcome
corresponding to the treatment condition at that time. This rules out treatment anticipation
(i.e., the treated group manifests treated outcomes before treatment begins) and spillovers/in-
terference (i.e., the untreated group manifests treated potential outcomes).

With Assumption 1 we can express the ATT as

(3) ATT = E𝒫
[︁
YT − YT (0)|G = 1

]︁
,

replacing the treated potential outcome with the observed outcome since the treated potential
outcome can be observed in the postperiod. It remains to replace the (unobservable) untreated
potential outcome with an observable quantity.

Suppose we predict the untreated potential outcome in period t , Yt (0), via f (𝑿t ), where
f is a model belonging to class of candidate models ℱ and 𝑿t is the collection of predictors
for untreated potential outcomes in period t .1 The predictors of untreated potential outcomes
in period t are quantities whose values are determined before (or are independent of) possible
treatment onset between periods t − 1 and t . When we have only one postperiod, T , “before
T ” and “preperiod” are the same. For extensions to multiple posttreatment periods, we also
limit a prediction model’s inputs to quantities whose values are determined before the start
of (or are independent of) treatment.

If the prediction function were perfect, we could identify the ATT without a comparison
group. That is, the ATT could be identified as

ATT = E𝒫
[︁
YT − f (𝑿T )|G = 1

]︁
.

This identification assumption is the basis for the single interrupted time series (ITS) design
(e.g., Wagner et al. (2002), Bloom (2003), Zhang and Penfold (2013), McDowall, McCleary
and Bartos (2019), Shadish, Cook and Campbell (2002)).

However, untreated outcomes may be subject to shocks that f cannot predict (Britt, Kleck
and Bordua (1996)). Therefore, we rely on an identification assumption that uses the compar-
ison group to inform us about what our prediction model misses. We assume that a model’s
prediction errors are equal in the treated and comparison groups (in expectation) or, expressed
another way, that unexpected shocks affect both groups’ outcomes equally (in expectation).

ASSUMPTION 2 (Equal expected prediction errors).

(4) E𝒫
[︁
YT (0) − f (𝑿T )|G = 1

]︁ = E𝒫
[︁
YT (0) − f (𝑿T )|G = 0

]︁
.

The following theorem establishes that, with this additional assumption, we can identify
the ATT.

1Since the collection of predictors may depend on the model f , we should index the predictors 𝑿t by the
corresponding model; however, for the time being, we leave this dependence implicit in our notation since the
corresponding model should be clear from context.
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THEOREM 1 (Causal identification by equal expected prediction errors). If Assumptions
1 and 2 hold, then the ATT in equation (1) is identified as

(5) E𝒫
[︁
YT − f (𝑿T )|G = 1

]︁ − E𝒫
[︁
YT − f (𝑿T )|G = 0

]︁
.

The proof, given in Section 1 of the Supplementary Material (Leavitt and Hatfield (2025)),
is straightforward, by linearity of expectation and substitution of observed outcomes using
Assumptions 1 and 2.

2.1. Existing designs as special cases. Under what circumstances would equal expected
prediction errors hold? It turns out that several popular nonparametric identification assump-
tions and structural causal models imply Assumption 2. That is, we show that when these
assumptions hold, Assumption 2 will also hold, for particular choices of prediction models.
We consider two such situations below and detail several more in the Supplementary Material
(Leavitt and Hatfield (2025)).

2.1.1. Nonparametric identifying assumptions. Identification for DID—a popular me-
thod for observational causal inference in a range of fields—may be shown using either non-
parametric assumptions or structural models. We follow the spirit of Angrist and Pischke
(2010, p. 14) who regard DID as a “design-based” method. Hence, we use a nonparametric
identification assumption to show that it implies our identification assumption given a careful
choice of prediction function.

We consider a simple setting in which there are two groups (treated and comparison) and
two periods (preperiod T − 1 and postperiod T ). DID’s crucial counterfactual assumption is
that untreated potential outcomes would have evolved in parallel in the two groups,

E𝒫
[︁
YT (0)|G = 1

]︁ − E𝒫
[︁
YT −1(0)|G = 1

]︁
= E𝒫

[︁
YT (0)|G = 0

]︁ − E𝒫
[︁
YT −1(0)|G = 0

]︁
.

(6)

In the Supplementary Material (Leavitt and Hatfield (2025), Section 2.1), we show that if
parallel trends hold, Assumption 2 does also for prediction model f (𝑿T ) = YT −1.

Of course, this is only the simplest example of a DID strategy. We can extend to more
complex DID settings with, for example, conditioning on covariates (in both the assumption
of parallel trends and the prediction model). In addition, as shown in the Supplementary
Material (Leavitt and Hatfield (2025)), we can use alternative assumptions such as those of
sequential DID.

2.1.2. Structural models. Suppose that we have multiple outcome measurement occa-
sions in the pre- and postintervention periods and multiple units in the treated and com-
parison groups. In this case, researchers often fit two-way fixed effects (TWFE) linear re-
gression models, where “two-way” refers to unit and time fixed effects (de Chaisemartin
and D’Haultfœuille (2023)). The models contain an interaction between an indicator of the
postintervention period and treated group, the coefficient of which is interpreted as an esti-
mator of the ATT. This approach can be justified by the equivalence of the TWFE estimator
and the DID estimator (Angrist and Pischke (2008), Egami and Yamauchi (2023), Imai and
Kim (2019), Kropko and Kubinec (2020), Sobel (2012), Wooldridge (2005)) in a particular
setting, which leads to the popular impression that TWFE model identification is also by a
parallel trends assumption. However, the equivalence does not extend to the more general set-
ting. Imai and Kim (2021) show that the TWFE model’s promise of simultaneous adjustment
for unobserved unit and time confounders depends crucially on linearity and additivity.
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Therefore, we assume that identification of TWFE models is via the following structural
model:

(7) Yu,t (0) = αu + γt + ϵu,t

in which E𝒫 [ϵu,t |αu,Gu] = 0, where u = 1, . . . ,U . We show in the Supplementary Material
(Leavitt and Hatfield (2025), Section 2.2) that when this structural model holds, Assumption 2
also holds if the prediction model is f (𝑿T ) = arg minαu

∑︁T −1
t=1 (Yu,t − αu)

2. This prediction
model is the population-level ordinary least squares (OLS) solution to the unit fixed effects
model’s objective function fit to data before period T , which is equivalent to the mean of a
unit’s outcomes in all pre-treatment periods.

Again, this is a simple instance of a TWFE structural model. In the Supplementary Ma-
terial (Leavitt and Hatfield (2025)), we also show that this idea extends to similar structural
models that include unit- or group-specific time trends (see Section 2.4) or lagged depen-
dent variables (see Section 2.5). Many researchers fit more complicated models and obtain
estimators from them. We have not proved that these are also special cases of Assumption 2.

2.2. Existing designs that are not special cases. The designs considered above all use a
pre-post contrast (to account for time-invariant group differences) and a treated-comparison
contrast (to account for common shocks). Likewise, our proposed framework uses a predic-
tion step (leveraging predictable features of each group’s outcome trajectories) and a correc-
tion step (leveraging the comparison group to correct for unexpected shocks). By contrast,
some designs lack an analog of either the prediction or correction steps. The ITS design uses
only a pre-post contrast; there are no comparison units with which to perform our correction
step. Synthetic control uses only a treated-comparison contrast, omitting the pre-post con-
trast. In the Supplementary Material (Leavitt and Hatfield (2025), Section 2.6) we provide
more detail on the question of synthetic control, showing that it is not a special case of our
framework.

2.3. Staggered adoption. Thus far, we have assumed that all treated units receive inter-
vention at the same time. We now extend to staggered adoption settings, taking the perspec-
tive of Callaway and Sant’Anna (2021). That is, we consider each treatment adoption time as
its own simple design, identify the treatment effect in each and weight these effects together
in a sensible way.

Define the multiple treated groups by their time of treatment adoption, g, and for the never-
treated group, let g = ∞. Define Yt (0) as the potential outcome at time t under assignment
to being never-treated and Yt (g) as the potential outcome at time t under assignment to treat-
ment starting at time g. Then we can restate consistency (Assumption 1) as

Yt = Yt (0) +
T∑︂

g=2

[︁
Yt (g) − Yt (0)

]︁
Gg,

where Gg = 1{G = g} is an indicator for membership in treatment timing group g. Our target
estimand is the average treatment effect on the treated for each treatment time g,

ATT(g) := E𝒫
[︁
Yg(g) − Yg(0)|Gg = 1

]︁
.

That is, the ATT is the difference in potential outcomes under the condition of being treated
at time g vs. being never-treated for units in treatment timing group g. To identify this, we
restate the equal expected prediction errors assumption as

E𝒫
[︁
Yt (0) − f (𝑿t )|Gg = 1

]︁ = E𝒫
[︁
Yt (0) − f (𝑿t )|G∞ = 1

]︁
, for t = g.
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Then we can use any of the several ideas in Section 3 of Callaway and Sant’Anna (2021) to
weight the resulting ATTs together.

This simplifies the approach of Callaway and Sant’Anna (2021) in two ways. First, we
exclude the possibility of using not-yet-treated units in the comparison group. Second, we
assume there is a single posttreatment time t = g at which we identify the ATT for each
treatment timing group. Of course, both of these could be relaxed. The point is that identifying
each ATT(g) reduces to the simple case of a treated group vs. comparison group.

3. Selecting models for robustness. We have described an assumption that can identify
the ATT in controlled pre-post settings and shown that, under several familiar nonparametric
or structural identifying assumptions, our identifying assumption would also hold. Because
our assumption frames the problem in terms of a prediction model, we want a principled basis
on which to choose among potential prediction models. Next, we propose to assess models’
robustness (the complement of sensitivity) and discuss the difference between a robust model
and a “correct” model.

3.1. Design sensitivity. The design sensitivity framework, originally developed for
matched observational studies (Rosenbaum (2004)), established that violations of key as-
sumptions lead to a range of point estimates that are consistent with sample data. Therefore,
an estimator limits not to a point, but rather an interval (Rosenbaum (2005, 2012)). For
a given violation, a sensitive design has a wider limiting interval than a more robust one.
Conversely, in our framework a more robust prediction model leads to a narrower limiting
interval.

The robustness of a model to violations of an identifying assumption is different from the
plausibility that a model is “correct,” that is, satisfies an identifying assumption. In the name
of assessing plausibility that a model is “correct,” researchers often study whether a version
of an identification assumption holds in the preperiod. For example, in DID designs it is com-
mon to test for nonparallel trends in the preperiod, which resembles a Granger causality test
(Granger (1969)) and other forms of “placebo” tests (see, e.g., Angrist and Pischke (2008),
p. 237). This practice implicitly assumes that patterns observed in the preperiod would have
continued into the postperiod in the absence of treatment. In other words, as Egami and
Yamauchi (2023) explain, this approach replaces one unverifiable assumption about counter-
factual outcomes with another. The framework of design sensitivity offers a practical way
out of this bind: we study the robustness of our inference to violations of the point iden-
tifying assumption, grounded in empirical evidence about the potential magnitude of those
violations.

3.2. Robustness criterion. We build on Rambachan and Roth (2023) who, following
Manski and Pepper (2018), set-identify the ATT by bounding the possible violations of par-
allel trends. Rambachan and Roth (2023) posit that the violation lies in a set defined by the
observed preperiod differential trends, yielding sensitivity bounds on the ATT. Similarly, we
suppose violations of our identifying assumption lie in a set defined by the preperiod differ-
ential prediction errors. Denote the observable population-level differential prediction errors
in period t under model specification f ∈ ℱ by

(8) δf,t := E𝒫
[︁
Yt − f (𝑿t )|G = 1

]︁ − E𝒫
[︁
Yt − f (𝑿t )|G = 0

]︁
.

The point identification of Assumption 2 under model f can now be expressed as δf,T −
ATT = 0. For set identification we would instead suppose that δf,T − ATT, that is, the
population-level difference in counterfactual prediction errors, lies in a compact set for some
f ∈ℱ .
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To define a relevant set, we follow Rambachan and Roth (2023) in supposing that the
violation of equal expected prediction errors is up to M times the largest absolute differential
prediction error in a set of pretreatment validation periods, 𝒱 ⊆ {2, . . . , T − 1}. That is, for
any model f , we suppose that the ATT lies in the interval given by[︂

δf,T − M max
v∈𝒱 |δf,v|, δf,T + M max

v∈𝒱 |δf,v|
]︂

(9)

with M ≥ 0. This leads to our definition of sensitivity, which is simply the length of the
interval in equation (9). A lesser length of this interval implies less sensitivity (i.e., greater
robustness).

We can imagine alternatives to this set restriction that entail different relationships between
pre- and postperiods. For instance, we could create an asymmetric set restriction. Or if we
think more recent validation periods are more informative, we might replace maxv∈𝒱 |δf,v|
in equation (9) with |δf,V |, where V := max𝒱 ; that is, we might bound the violation by M

times the most recent absolute difference in prediction errors. Alternatively, if we think the
average pretreatment deviation matters, we could use 1/|𝒱|∑︁v∈𝒱 |δf,v|. We proceed with the
set restriction in equation (9), but these alternatives are straightforward to implement.

The sensitivity parameter M controls how tightly we constrain the identification assump-
tion. Point identification of Assumption 2 holds under M = 0 and set identification can hold
under M > 0. Proposition 1 establishes that we can use preperiod data to see which model,
f , in a set of candidate models, ℱ , is most robust.

PROPOSITION 1. Let f and f ′ be two prediction model specifications in the set of can-
didate model specifications, ℱ . Under the sensitivity model in equation (9), model f is more
robust than f ′ if and only if maxv∈𝒱 |δf,v| ≤ maxv∈𝒱 |δf ′,v|.

The proof is in the Supplementary Material (Leavitt and Hatfield (2025), Section 1.2).
Proposition 1 shows that, as long as there is some nonzero pretreatment difference in pre-

diction errors for all f ∈ ℱ , the most robust model for any M > 0 will be the one with the
smallest maximum absolute difference in prediction errors. By deriving robustness in terms
of observable preperiod quantities, we can choose among candidate models using the data.
If we had a different set restriction (e.g., the most recent or mean across validation periods),
the procedure for selecting models on robustness is the same: the one with the narrowest
sensitivity bounds.

How is choosing the most robust model different from choosing the “correct” model? Sup-
pose that M = 0 holds for one model, implying that Assumption 2 is satisfied, but that this
model is nonetheless less robust (by our criterion) than another candidate model. Proposi-
tion 2 quantifies the consequences of this trade-off between “correctness” and robustness.

PROPOSITION 2. Suppose M = 0 holds for f ′, which implies that Assumption 2 is sat-
isfied for f ′, but that f ′ is less robust than f , as defined in Proposition 1. The difference
between the ATT of the correct model and the population-level difference in expected predic-
tion errors of the robust model is

(10) E𝒫
[︁
f (𝑿T ) − f ′(𝑿T )|G = 0

]︁ − E𝒫
[︁
f (𝑿T ) − f ′(𝑿T )|G = 1

]︁
.

The proof is in the Supplementary Material (Leavitt and Hatfield (2025), Section 1.3).
Proposition 2 shows that when a model’s differential prediction errors in the validation

periods provide “misleading” information about (unobservable) differential prediction error
in the postperiod, our conclusions will suffer. This is related to the idea that conclusions are
more robust if point estimates are stable across competing models (Brown and Atal (2019),
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O’Neill et al. (2016)). In our framework, two prediction models that yield identical point esti-
mates for M = 0 can have quite different robustness for M > 0. However, if two models yield
identical point estimates, then equation (10) is equal to 0. Therefore, stable point estimates
across prediction models do not imply our conclusions are more robust, but they do mitigate
a potential trade-off in which choosing the most robust model could come at the expense of
choosing the “correct” model.

4. Model selection, estimation and inference. Thus far, we have considered population
quantities only. To extend our ideas to estimation and inference from finite samples, we can-
not simply plug in sample analogs of population quantities. This is because we use the data
twice: first to choose a robust prediction model and again to estimate our target parameter.
We, therefore, develop a procedure that accounts for this, illustrating our ideas in an impor-
tant and accessible class of prediction models: OLS linear regression. This class of models
is sufficiently rich to capture a range of models that researchers employ in the gun policy
literature. It would be straightforward to show that our conclusions apply to other models,
such as logistic, Poisson, transformed-outcome and isotonic regression (see, e.g., Guo and
Basse (2023)), but we leave this as a topic for future research.

First, we set up the data structure and sampling mechanism. Suppose we have a sample of
units indexed by i = 1, . . . , n (rather than u, as in the TWFE structural model, to emphasize
that we are now referring to a finite sample). Each unit’s observed data up to and including
period t are

𝑫i,t := {Yi,t ,𝒀 i,<t ,𝑿i,t ,𝑿i,<t ,Gi},(11)

where 𝒀 i,<t and 𝑿i,<t are the outcomes and predictors from t = 1, . . . , t −1 and Yi,t and 𝑿i,t

are outcomes and predictors in period t . The respective collections of 𝒀 i,<t and 𝑿i,<t over
all i = 1, . . . , n units are 𝒀<t := {𝒀 1,<t , . . . ,𝒀 n,<t } and 𝑿<t := {𝑿1,<t , . . . ,𝑿n,<t }. We can
collect the data in equation (11) over all i = 1, . . . , n units into 𝑫t := {𝑫1,t , . . . ,𝑫n,t }, over
times into 𝑫i := {𝑫i,1, . . . ,𝑫i,T } and over all units and all times into 𝑫 = {𝑫1, . . . ,𝑫n}.

We assume the following condition on how these data are sampled.

ASSUMPTION 3. For all i = 1, . . . , n, the sample data, {𝑫i}, are independent and identi-
cally distributed (i.i.d.).

Assumption 3 states that i.i.d. sampling occurs at the cluster level, where the clusters are
the individual units indexed by i = 1, . . . n.

Next, we set up the prediction models in the OLS framework. Before we proceed, we need
an additional assumption that places conditions on the population moments. This assumption
applies to each corresponding matrix of predictors for each of the candidate models in ℱ .

ASSUMPTION 4 (Population moment conditions). For groups G = 0 and G = 1,
E𝒫 [𝒀 t |G = g] < ∞ and E𝒫 [∥𝑿t∥2|G = g] < ∞ for all t = 1, . . . , T , and E𝒫 [𝑿<t𝑿

⊤
<t |G =

g] is positive definite for all t = 2, . . . , T .

The first two conditions are standard, and the third condition implies that we can generate
predictions in period t based on the OLS solution to a linear regression model’s objective
function in periods before t .

We write the model f for group g in period t as a function of both predictors and param-
eters, f (𝑿i,t ;𝜷f,g,t ), where 𝜷f,g,t ∈ ℜK (in which K is the dimension of 𝑿i,t and ℜ is the
set of real numbers). Note that 𝜷f,g,t is simply a collection of linear projection coefficients
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for a particular model f in group g based on the population-level OLS solution to the linear
regression model’s objective function in periods before t . That is, under Assumption 4,

𝜷f,g,t = (︁
E𝒫

[︁
𝑿<t𝑿

⊤
<t |G = g

]︁)︁−1 E𝒫 [𝑿<t𝒀<t |G = g].(12)

The collection of estimated coefficients, 𝜷̂f,g,t , is the sample analog of equation (12). We

collect the estimated coefficients over groups into 𝜷̂f,t := {𝜷̂f,1,t , 𝜷̂f,0,t }. We denote the es-

timated coefficients collected over times by 𝜷̂f and the estimated coefficients collected over

models by 𝜷̂ t . The collection of the estimated coefficients over all models and times is 𝜷̂ and
the collection over all models and pretreatment validation times is 𝜷̂𝒱 .

With Assumptions 3 and 4 in hand, we write a point estimator of δf,t as

δ̂(𝑫t , 𝜷̂f,t ) :=
(︃

1

n1

)︃ n∑︂
i=1

1{Gi = 1}Yi,t −
(︃

1

n1

)︃ n∑︂
i=1

1{Gi = 1}𝑿i,t 𝜷̂f,1,t

−
[︄(︃

1

n0

)︃ n∑︂
i=1

1{Gi = 0}Yi,t −
(︃

1

n0

)︃ n∑︂
i=1

1{Gi = 0}𝑿i,t 𝜷̂f,0,t

]︄
,

(13)

where ng := ∑︁n
i=1 1{Gi = g}. The estimator of lower and upper bounds of the ATT in period

T for any M ≥ 0 and f ∈ ℱ is

Δ̂(𝑫, 𝜷̂f ,M) := δ̂(𝑫T , 𝜷̂f,T ) ± M max
v∈𝒱

⃓⃓
δ̂(𝑫v, 𝜷̂f,v)

⃓⃓
.(14)

When M = 0, we simply use δ̂(𝑫T , 𝜷̂f,T ).

A simple approach to estimation would be to: (1) estimate δ̂(𝑫v, 𝜷̂f,v) for each model and
validation period, (2) choose the model with the smallest worst-case absolute difference in
prediction errors over the validation periods and (3) use that model to estimate the ATT and
its bounds. However, because the chosen model depends on our particular sample, we want
to incorporate this uncertainty about the model into our procedure.

The usual approach of splitting data into testing and training subsets is not feasible. We
cannot split the data “vertically” (i.e., in time) because our estimators and model selection
criterion use the same data by construction: terms in equation (14) use data from pretreatment
validation periods 𝒱 . Nor can we rely on splitting the data “horizontally:” many applications
(including the one we consider here) have only a single or a few treated units, so we cannot
afford to split the units.

Therefore, we propose to use a BMA estimator, which averages the estimates across mod-
els, weighting each by the model’s posterior probability of being the most robust in the pop-
ulation. We write this estimator asˆ︁Eℱ |𝑫

[︁
Δ̂(𝑫, 𝜷̂,M)

]︁ := ∑︂
f ∈ℱ

Δ̂(𝑫, 𝜷̂f ,M)p̂f ,(15)

where p̂f is the posterior probability that model f is the most robust model, given the sample
data. This alternative to the “pick the winner” approach, outlined above, has statistical advan-
tages (Piironen and Vehtari (2017), Madigan and Raftery (1994), Draper (1995), Moulton
(1991), Raftery, Madigan and Hoeting (1997)).

How do we generate these posterior probabilities? We extend what Gelman and Hill (2006,
p. 140) refer to as their “informal Bayesian approach.” This has been employed by many re-
searchers (e.g., King, Tomz and Wittenberg (2000), Tomz, Wittenberg and King (2003)),
including in ITS designs (Miratrix (2022)). The idea is to generate samples from the “infor-
mal” posterior of all the coefficients across all prediction models and pretreatment validation
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periods. For this distribution we use a multivariate Normal with a mean equal to the estimated
coefficients 𝜷̂𝒱 (collected over all validation times and models in ℱ ) and a variance given by
their estimated (robust) variance-covariance matrix clustered at the individual level (Liang
and Zeger (1986), Arellano (1987)), ˆ︁𝚺𝒱 . This approach is equivalent to the posterior distri-
bution of the models’ parameters if the prior were flat. To estimate the variance-covariance
of all the parameters across all the model and time periods simultaneously, we use seemingly
unrelated regression tools pioneered by Zellner (1962, 1963) (see also Mize, Doan and Long
(2019)) detailed in the Supplementary Material (Leavitt and Hatfield (2025), Section 3).

To generate the posterior probability that a model is optimal in the population, under each
draw from the posterior, we predict outcomes, calculate differential prediction errors over
the validation periods and then select the best model. Doing this many times generates a
distribution for the best model. That is, the number of times each model is selected by this
procedure is proportional to the strength of the evidence that each model is the most robust.

To formally characterize this procedure, let 𝜷̂
(s)

𝒱 for s = 1, . . . , S be draws from
𝒩 (𝜷̂𝒱 , ˆ︁𝚺𝒱). Then for all f ∈ ℱ , write p̂f as

p̂f := 1

S

S∑︂
s=1

1
{︂
f = arg min

f ∈ℱ
max
v∈𝒱

⃓⃓
δ
(︁
𝑫v, 𝜷̂

(s)

f,v

)︁⃓⃓}︂
,(16)

which is the proportion of draws in which f is the most robust model. Below we show that,
in a sufficiently large sample, this proportion will be close to one with high probability for
the truly most robust model.

LEMMA 1. Let f † ∈ ℱ denote the most robust model in the population. Under Assump-
tions 1, 3 and 4,

p̂f †
p→ 1.

The proof is given in the Supplementary Material (Leavitt and Hatfield (2025), Sec-
tion 1.4). As we show next, this lemma implies that our BMA estimator is consistent.

PROPOSITION 3. Under Assumptions 1, 3 and 4,

ˆ︁Eℱ |𝑫
[︁
Δ̂(𝑫, 𝜷̂,M)

]︁ p→ δf †,T ± M max
v∈𝒱 |δf †,v|.

The proof is also given in the Supplementary Material (Leavitt and Hatfield (2025), Sec-
tion 1.5). Proposition 3 shows that the BMA estimator converges in probability to the same
limit as that of an estimator in which the optimal model in the population is known before ob-
serving data. We provide a conceptual diagram of the overall estimation process in Figure 1
of the Supplementary Material (Leavitt and Hatfield (2025), Section 4).

For inference, we build on the approach from Antonelli, Papadogeorgou and Dominici
(2022). These authors establish that we can estimate the uncertainty about both the model
and the data in a computationally tractable way by summing two components: variance of
the model posterior (holding the sample fixed) and variance of the sample (holding the model
posterior fixed). Denote the variance of S draws from the observed posterior, holding the
sample fixed, by

(17) ˆ︃Varℱ |𝑫
[︁
Δ̂(𝑫, 𝜷̂,M)

]︁ := ∑︂
f ∈ℱ

(︁
Δ̂(𝑫, 𝜷̂f ,M) − ˆ︁Eℱ |𝑫

[︁
Δ̂(𝑫, 𝜷̂,M)

]︁)︁2
p̂f .
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Then, let r = 1, . . . ,R index resamples of the data, and denote the variance of our estimator
over R resamples, holding fixed the observed posterior, as

ˆ︃Var𝑫(r)|ℱ
[︁ˆ︁Eℱ |𝑫

[︁
Δ̂

(︁
𝑫(r),ˆ︁𝜷(r)

,M
)︁]︁]︁ := 1

R

R∑︂
r=1

(︄ˆ︁Eℱ |𝑫
[︁
Δ̂

(︁
𝑫(r),ˆ︁𝜷(r)

,M
)︁]︁

− 1

R

R∑︂
r=1

ˆ︁Eℱ |𝑫
[︁
Δ̂

(︁
𝑫(r),ˆ︁𝜷(r)

,M
)︁]︁)︄2

.

(18)

In practice, we draw R resamples of the data via the fractional weighted bootstrap (Xu et al.
(2020)). The overall variance estimator, accounting for both sampling and model uncertainty,
of the BMA estimator in equation (15) is the sum of equations (17) and (18). Confidence
intervals can then be constructed by drawing on a Normal approximation. We demonstrate
the coverage properties of this approach’s 95% confidence intervals through simulations pre-
sented in the Supplementary Material (Leavitt and Hatfield (2025), Section 6). We also ob-
serve the conservatism that Antonelli, Papadogeorgou and Dominici (2022, p. 103) note.

5. The effect of gun laws on violent crime. We now return to our analysis of Missouri’s
2007 repeal of its permit-to-purchase law. The law, in place since 1921, had required people
purchasing handguns from private sellers to obtain a license that verified the purchaser had
passed a background check. Our data comprise state-year observations of the homicide rate
in Missouri and each of its eight neighboring comparison states from 1994 to 2016. For sim-
plicity, we recode the data so that there is a single posttreatment period (denoted by “2008+”
in Figure 1) in which each state’s outcome in 2008 is the average of that state’s outcomes over
all posttreatment periods (2008–2016). To estimate the repeal’s impact on gun homicides, we
form a set of candidate prediction models drawn from the gun policy literature. Researchers
agree on a basic model with unit fixed effects (as in Webster, Crifasi and Vernick (2014)) but
disagree on other model components. Based on our survey of the literature, we divide the
relevant model components into three categories:

1. Unit-specific time trends. Researchers often include unit-specific time trends, usually
linear but sometimes more complicated forms (Black and Nagin (1998), French and Heagerty
(2008)). Others explicitly advocate against their inclusion (Aneja, Donohue III and Zhang
(2014), Wolfers (2006)). We consider models that include unit-specific linear or quadratic
trends. (It is straightforward to include higher-order trends, e.g., cubic, quartic, quintic, etc.)

2. Lagged dependent variables (LDV). Some researchers include lags of the dependent
variable (Duwe, Kovandzic and Moody (2002), Moody et al. (2014)), while others advo-
cate against their inclusion because of the possibility of bias in short time series (Nickell
(1981)). Following the applied literature, we consider only models that include values of
the dependent variable at one time lag; however, multiple time lags are straightforward to
incorporate.

3. Outcome transformations. Linear regression is popular but can be problematic because
many outcomes of interest (including the homicide rate that we consider) are naturally
bounded (Moody (2001), Plassmann and Tideman (2001)). We use only linear models but
do consider transformations of the outcome variable, specifically logs and first differences
(Black and Nagin (1998)). However, because we want to compare across models, we back-
transform our predictions to the original outcome scale to compute prediction errors.

Obviously, this framework leaves out some modeling variations. For example, some stud-
ies in the gun policy literature employ random effects (Crifasi et al. (2018)) and two-stage
models (Rubin and Dezhbakhsh (2003)). However, given the prominence of these three model
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TABLE 1
Model components used to create a set of candidate prediction models

Time trend Lagged dependent variables Outcome transformations

None None None
t Yt−1 log(Yt )

t2 Yt − Yt−1

components as well as unit fixed effects and linear models, we believe the resulting set of can-
didate models is reasonably broad and relevant to the gun policy literature.

From the model components above (summarized in Table 1), we take all possible combi-
nations to derive a set of 18 candidate models. Because of their use in virtually all prediction
models we surveyed, we include unit fixed effects for all 18 prediction models.

To select among the 18 prediction models, we estimate the differences in average predic-
tion errors between treated and comparison groups. For each year prior to the law’s passage
in 2007, we train our prediction models on the previous years. For example, in 2006, we train
a model on data from 1994 to 2005, predict in 2006 and compute the difference in average
prediction errors between treated and comparison groups. To ensure adequate years of train-
ing data, we follow Hasegawa, Webster and Small (2019) in beginning the validation period
in 1999. Thus, we have five or more years of training data, even in the first validation year
(1999, for which we train the model on data from 1994–1998).

Figure 2 shows the absolute differential average prediction errors for all 18 models over all
validation years, with the maximum for each model highlighted in black. The LDV, that is,
AR(1), model with unit fixed effects fit to the log of the outcome (row 1, column 5) minimizes
our sensitivity criterion on the sample data. The baseline mean model with unit fixed effects

FIG. 2. Absolute difference in average prediction errors for all candidate models. The maximum for each model
is highlighted in black. The optimal model is highlighted in gray.
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(row 1, column 1), which is arguably the closest correspondent to the model of choice in
Hasegawa, Webster and Small (2019), is the fifth-best model.

From Figure 2 we can also see which prediction models would be optimal under different
sensitivity criteria. For example, the prediction model with the smallest absolute difference
in average prediction errors in the last preperiod (2007) is the linear time trend model with
unit fixed effects (row 2, column 1). By contrast, the prediction model with the smallest
absolute difference in average prediction errors, averaged over all validation periods, is the
baseline mean model with unit fixed effects fit to the log of the outcome (row 1, column 4).
These different loss functions for choosing the optimal model can be justified by an appro-
priate sensitivity analysis model. Given the sensitivity analysis in equation (9), which aligns
with the sensitivity analysis proposed in recent research (Rambachan and Roth (2023)), the
aforementioned LDV model with unit fixed effects fit to the outcome’s log scale is optimal.

Figure 3 shows the relationship between models’ point estimates and their robustness. As
this figure illustrates, the potential trade-offs between models’ “correctness” and robustness
are not especially severe. The standard deviation of point estimates across models is 0.38. In
addition, the most and least robust models yield relatively similar point estimates of 1.14 and
1.88, respectively. In contrast to other application in the gun policy literature (National Re-
search Council of the National Academies (2005), Morral et al. (2018), Smart et al. (2020)),
this similarity of point estimates across models appears atypical.

Although point estimates may be similar across models, these models can differ in terms
of robustness. Nevertheless, much value remains in the similarity of point estimates across
models. As Proposition 2 shows, if point identification of M = 0 happens to be true under
one model that is not the most robust, then the point estimate under the most robust model
will not be too misleading insofar as the estimates under both models are similar.

Turning to estimation and inference, this empirical setting requires careful attention to the
sources of randomness. In the setting of gun policy research, an influential article by Manski
and Pepper (2018) argues that it is often difficult to conceive the units of analysis as randomly
sampled from a target population of interest: “Random sampling assumptions, however, are
not natural when considering states or countries as units of observations” (Manski and Pepper
(2018), p. 235). Instead, in the setting of most gun policy research, as Manski and Pepper

FIG. 3. Estimates under each model (y axis) and corresponding maximum absolute differential prediction errors
in the preperiod (x-axis). Point size is proportional to the model’s posterior weight.
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(2018) argue, uncertainty is driven by a fundamental ambiguity over whether counterfactual
point identification assumptions hold—that is, what Rambachan and Roth ((2023), p. 2556)
call “identification uncertainty.”

In a setting characterized by only identification rather than sampling uncertainty, Ram-
bachan and Roth ((2023), p. 2563) argue that a natural starting point for controlled pre-post
designs is one of set identification with M = 1. In this set identification framework (as op-
posed to point identification in which M = 0), researchers can then gradually increase M in
a subsequent sensitivity analysis. A crucial feature of this inferential setting is the absence of
uncertainty over which model is truly optimal.

In this setting, one could deterministically select the truly optimal model. Then, given
the selection of this optimal model, it would be straightforward to calculate bounds on the
ATT under M = 1 and to assess the sensitivity of these bounds under increasing values of
M . Under this approach the bounds of the ATT (with M = 1) under the most robust model
is [0.61,1.78]. The changepoint value of M , that is, the smallest value of M at which the
estimated lower and upper bounds of the ATT bracket 0, is 2.04.

The analysis above supposes the setting that Manski and Pepper (2018) argue is most sen-
sible for our application. However, if we suppose that states are independent and identically
distributed draws from a target population, then the estimation and inferential procedure in
Section 4 is appropriate. The BMA point estimate (under M = 0) of 1.2 is nearly identical
to the point estimate under the optimal model (1.19) in the realized sample. The reason for
this similarity is because the optimal model in the sample (LDV with unit fixed effects fit
to the outcome’s log scale) receives high posterior probability of being the population’s op-
timal model (approximately 0.97). The model with the second greatest posterior probability
of approximately 0.03 is the next best model in the sample data (the LDV model with unit
fixed effects fit without the log transformation of the outcome). Figure 4 below shows the full
posterior distribution given the sample data, where the x-axis includes only the models in the
support of the observed posterior.

Our proposed variance estimation procedure, which we would expect not to perform at
its best in small samples, yields an estimated standard error (accounting for both model and
sampling uncertainty) of 0.14 and corresponding 95% confidence interval of [0.93,1.46].
That is, we conclude that the repeal of Missouri’s permit-to-purchase law increased the state’s

FIG. 4. Posterior plausibility that each candidate model is optimal.
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gun homicide rate by somewhere between 0.93 to 1.46 per 100,000 people. The observed
homicide rate in 2007 (just before the repeal) in Missouri was 4.5, so the point estimate of
roughly 1.2 represents a 27% increase.

For context, Webster, Crifasi and Vernick (2014) state that they estimate an increase of
1.09 per 100,000 (+23%); Hasegawa, Webster and Small (2019) state that they estimate an
increase of 1.2 per 100,000 (+24%) using standard DID methods and increases between
0.9 and 1.3 per 100,000 (+17% to +27%) with their bracketing approach. Using synthetic
control methods, other authors estimate that Connecticut’s adoption of a permit-to-purchase
handgun law decreased firearm homicides by 40% (Rudolph et al. (2015)). Thus, our estimate
is on the higher end of estimates of the effect for Missouri’s policy change specifically, and
there is some evidence that the effects of implementation and repeal of these kinds of laws
may be asymmetric.

The changepoint value of M for the BMA estimator is 2.04—slightly smaller (but only by
a rounding margin) than the changepoint value of M obtained without accounting for model
uncertainty under the most robust model. The changepoint value of M at which the lower
bound estimator’s 95% confidence interval no longer excludes 0 is approximately 1.25. This
smaller value is expected in a study with a limited sample size.

6. Conclusion and open questions. In this paper we introduce a new method for causal
inference in controlled pre-post settings, averaged prediction models (or APM). We began
by introducing a general identification framework for a broad class of prediction models in
which one predicts untreated potential outcomes and corrects these predictions using the
observable prediction error in the comparison group. We have shown that several popular
designs are special cases of our general identification framework. Then to choose among the
set of candidate prediction models, we propose a BMA procedure based on each model’s
robustness given preperiod data.

We applied these ideas to reconcile disparate models and assumptions from gun policy
evaluations. Specifically, we studied the repeal of Missouri’s permit-to-purchase law in 2007
using models drawn from the literature. Rather than make claims that any one underlying
causal model is “correct,” we selected the optimal model based on robustness. We found
that a lagged dependent variable model with unit fixed effects, fit to the outcome’s log scale,
minimized our robustness criterion in our sample, making this model the most likely to be
the truly optimal model in the population (although other models are plausible as well). Our
overall point estimate, averaging over the posterior probability that each model is optimal in
the population, was an increase of 1.2 homicides per 100,000 people.

Our sensitivity bounds would include 0 for M ≥ 2.04. That is, the violation of Assump-
tion 2 would have to be at least 2.04 times greater than a weighted combination of each
model’s worst violation in the nine validation years. By contrast, in the absence of our
Bayesian model selection procedure, the value of M that leads the sensitivity bounds to in-
clude 0—when conditioning on any single candidate model—could be much smaller, as low
as 0.28, with an unweighted average (across all models) of 1.12.

Our approach has several limitations. First, like all causal inference methods, our iden-
tifying assumption is untestable because it involves counterfactual quantities. Studying the
differential prediction errors of a set of models in the preperiod has similar conceptual prob-
lems to testing for differential pretrends in DID. This is why we use a sensitivity perspective
to choose a prediction model based on robustness.

Second, our method is scale-dependent because we measure prediction error as a linear
difference on the scale of the outcome variable. This limits our approach. However, we be-
lieve this limitation is not specific to our particular framework, as scale dependence is a
well-known issue in controlled pre-post designs as a whole.
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Third, our prediction models use only variables that are measured prior to (or are inde-
pendent of) treatment. For some data-generating models, such as interactive fixed effects, the
correction step will not de-bias the estimator because the shocks do not affect treated and
comparison groups equally. However, as pointed out by a reviewer, an interesting extension
of our ideas might separate the comparison units into some for the prediction step and oth-
ers for the correction step. For instance, the contemporaneous outcomes of some comparison
units could be allowed into the prediction function for the treated units’ postperiod outcomes,
while other comparison units’ postperiod outcomes are used to correct for unexpected com-
mon shocks.

Fourth, by switching to a robustness criterion for model selection, we induce a possible
“correctness” vs. robustness trade-off (Proposition 2). Rather than claim that we can choose
the “correct” model, we choose a model that maximizes our robustness criterion. A model
for which our identifying assumption (Assumption 2) holds exactly need not maximize ro-
bustness. However, since there is no data-driven way to choose a model that satisfies a causal
identification assumption, we believe choosing based on robustness offers an appealing alter-
native.

Finally, our inferential procedure, which attempts to appropriately account for uncertainty
in both the model and data, may not sufficiently do so in all scenarios. For example, bootstrap
methods perform poorly when there are few clusters, as in our analysis with only one treated
unit and eight comparison units (Bertrand, Duflo and Mullainathan (2004), MacKinnon and
Webb (2020), Conley and Taber (2011), Rokicki et al. (2018)). However, we still believe that
our proposal for formally accounting for the model selection procedure is an improvement
over the status quo in which model selection is usually hidden from view and outside the
bounds of inference entirely. Postselection inference is an active area of research and, as a
recent review article noted, “has a long and rich history, and the literature has grown beyond
what can reasonably be synthesized in our review” (Kuchibhotla, Kolassa and Kuffner (2022),
p. 506). Future research should explore the application of these simultaneous inference and
conditional selective inference methods to problems like ours in which sample splitting is not
feasible.

Our proposal also has several key strengths. First, our conception of robustness allows
us to choose a prediction model using pretreatment observations only. This may discourage
“fishing,” that is, picking a prediction model that yields the most desirable or statistically sig-
nificant result. Contrast this with selecting a model based on “correctness,” which involves
assumptions about unknowable counterfactual outcomes and, therefore, introduces the temp-
tation to claim that the model with the most favorable results is the “correct” model.

Second, many researchers already interpret robustness in terms of “correctness.” In DID,
for instance, researchers interpret parallel trends in the preperiod as evidence for the plau-
sibility of parallel trends from the pre- to postperiods. Yet violations of preperiod parallel
trends can still be consistent with the identifying assumption (Kahn-Lang and Lang (2020),
Roth and Sant’Anna (2023), Egami and Yamauchi (2023)). Therefore, our proposal offers a
more transparent version of this practice, recasting the evaluation of preperiod violations in
terms of a sensitivity analysis rather than as a test of untestable assumptions.

Third, we show that our identification framework unifies a wide variety of prediction mod-
els researchers employ in practice. We also show that some familiar designs are special cases
of our general identifying assumption for particular choices of prediction models. Thus, to
generate the set of candidate prediction models, the existing literature can provide a rich set
of models that already have the imprimatur of plausibility.

Fourth, we provide an R package (apm), which implements our estimation and inference
procedures. The package includes functions that create a variety of prediction models and fit
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them to the preintervention data. It then extracts the differential prediction errors and com-
putes a model-averaged estimate and standard error using this paper’s Bayesian and bootstrap
procedures, which account for both sampling and model uncertainty.

Fifth, we need not be limited to models already in use. Another potentially significant
benefit of our proposed method is its ability to draw upon flexible and modern prediction
models, for example, machine learning methods. Recall that we need not believe the model;
in fact, the inner workings of a prediction model can remain a “black box.” As long as the
model generates equally good predictions in the treated and control groups, we can identify
our target causal estimand. However, we note that our estimation and inferential procedure
would need to be substantially updated to accommodate such models, and we believe this is
a fruitful line of future inquiry.
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Supplement to “Averaged Prediction Models (APM): Identifying causal effects
in controlled pre-post settings with application to gun policy” (DOI: 10.1214/25-
AOAS2011SUPP; .pdf). Supplementary material for this article include: Supplementary
PDF. Contains complete mathematical proofs of all theoretical results stated in the main
text. Also includes derivations showing how existing designs are special cases (or not) of our
general framework, a detailed description of the joint variance-covariance matrix used for
Bayesian model averaging, a conceptual diagram of the estimation procedure, a full list of
prediction models used in the applied analysis, and additional simulation results evaluating
the performance of our procedure across various sample sizes. Replication Archive. Includes
the full dataset and R scripts required to replicate all empirical results, figures, and simulation
studies. The archive also documents how the analysis dataset was constructed from the raw
data. A README file is provided to guide users through the replication process.
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SUPPLEMENTARY MATERIAL

1. Proofs.

1.1. Proof of Theorem 1.

PROOF. The proof is analogous to that of the ATT’s identification under parallel trends in
the canonical DID design. The descriptive difference between treated and control populations
is

EP [YT |G= 1]− EP [f(XT ) |G= 1]− (EP [YT |G= 0]− EP [f(XT ) |G= 0]) .

Then, given the model relating observed to potential outcomes in Assumption 1 of the
manuscript, namely, Yt = ZtYt(1) + (1−Zt)Yt(0), this descriptive difference can be ex-
pressed as

EP [YT (1) |G= 1]− EP [f(XT ) |G= 1]− (EP [YT (0) |G= 0]− EP [f(XT ) |G= 0]) .
(1)

Equal-expected-prediction-errors in Assumption 2 of the manuscript then implies that

EP [f(XT ) |G= 1] = EP [YT (0) |G= 1]− (EP [YT (0) |G= 0]− EP [f(XT ) |G= 0]) ,

which, upon substituting this expression for EP [f(XT ) |G= 1] in Eq. 1, yields

EP [YT (1) |G= 1]− (EP [YT (0) |G= 1]− (EP [YT (0) |G= 0]− EP [f(XT ) |G= 0]))︸ ︷︷ ︸
=EP [f(XT ) |G=1]

− (EP [YT (0) |G= 0]− EP [f(XT ) |G= 0])

= EP [YT (1)− YT (0) |G= 1]

= ATT,

thereby completing the proof.

1.2. Proof of Proposition 1.

PROOF. The proof is immediate from the the ATT’s lower and upper bounds in Eq. 9 of
the manuscript: The difference between the upper and lower bounds of the ATT is

δf,T +Mmax
v∈V

|δf,v| −
(
δf,T −Mmax

v∈V
|δf,v|

)
= 2Mmax

v∈V
|δf,v|.(2)

1



2

It follows immediately from Eq. 2 that, for a fixed M ≥ 0, one model, f , will be (weakly)
more robust than another model, f ′, if and only if

max
v∈V

|δf,v| ≤max
v∈V

|δf ′,v|.

1.3. Proof of Proposition 2.

PROOF. The supposition that equal expected prediction errors in Assumption 2 of the
manuscript holds for f ′ implies, following Theorem 1, that we can express the true ATT as

ATT = EP [YT (1) |G= 1]− EP
[
f ′(XT ) |G= 1

]
−
(
EP [YT (0) |G= 0]− EP

[
f ′(XT ) |G= 0

])
.

(3)

Then taking the difference between

EP [YT (1) |G= 1]− EP [f(XT ) |G= 1]− (EP [YT (0) |G= 0]− EP [f(XT ) |G= 0]) ,

the population-level difference in expected prediction errors under the robust model, and the
ATT in Eq. 3 yields(
EP [f(XT ) |G= 0]− EP

[
f ′(XT ) |G= 0

])
−
(
EP [f(XT ) |G= 1]− EP

[
f ′(XT ) |G= 1

])
,

thereby completing the proof.

1.4. Proof of Lemma 1.

PROOF. The proof proceeds in the following steps.

1. First, it shows that draws of coefficients from the multivariate Normal centered at the
estimated coefficients (for all validation periods) with variance-covariance matrix equal
to Eq. 22 of the manuscript are arbitrarily close to (i.e., within a distance of ε > 0 from)
the population-level coefficients with probability limiting to 1.

2. Then the proof shows that the difference in average prediction errors, calculated over
random draws from the aforementioned multivariate Normal, will be arbitrarily close to
the population-level difference in expected prediction errors with probability limiting to
1.

3. Finally, the proof concludes by showing that one event, the difference in average predic-
tion errors’ being within a distance of ε from the population-level difference in expected
prediction errors, implies another event, the most robust model in the population mini-
mizes the maximum absolute difference in average prediction errors over draws of coeffi-
cients from the multivariate Normal. Since Step 2 establishes that the former event occurs
with probability limiting to 1, Step 3 implies, by logical implication, that the latter event
must also occur with probability limiting to 1. Therefore, in our procedure, the posterior
probability of the truly most robust model will converge in probability to 1.

To carry out the proof via the steps above, first let β̂∗
V denote a draw from N

(
β̂V ,̂ΣV

)
conditional on sample data and let Pr∗ denote conditional probability given sample data.
Then note that the weak law of large numbers (WLLN) implies that β̂V

p→ βV , where βV
is the population-level coefficients for the validation periods, and̂ ΣV

p→ 0 as n→∞. The
continuous mapping theorem (CMT), implies that N

(
β̂V ,̂ΣV

)
converges in probability to



3

a constant, whereby the probability that any draw, β̂∗
V , is equal to βV is 1. (This property

can be established by taking the multivariate Normal’s MGF and showing that it limits to the
MGF of a multivariate constant.) Hence, it follows that, for all ε > 0,

∗
Pr
(
∥β̂∗

V −βV∥2 ≤ ε
)

p→ 1.

Turning to Step 2, to show convergence of the difference in average prediction errors to
the population-level difference in expected prediction errors, we first establish convergence
in probability of the regression prediction in a sample to its population-level analog. To do
so, first write the average of the squared differences in predictions between β̂∗

f,v and the
population-level βf,v for any (f, v) as

1

ng

n∑
i=1

1{Gi = g}
[
Xi,t

(
β̂∗
f,v −βf,v

)]2
.(4)

The Cauchy-Schwarz inequality implies that

1

ng

n∑
i=1

1{Gi = g}
[
Xi,v

(
β̂∗
f,v −βf,v

)]2
≤ ∥β̂∗

f,v −βf,v∥2
1

ng

n∑
i=1

1{Gi = g}Xi,vX
⊤
i,v.

The WLLN implies that the second factor,
1

ng

n∑
i=1

1{Gi = g}Xi,vX
⊤
i,v , limits in prob-

ability to EP
[
XvX

⊤
v |G= g

]
, where the regularity conditions in Assumption 4 of the

manuscript imply that EP
[
XvX

⊤
v |G= g

]
<∞. Consequently, since ∥β̂∗

f,v − βf,v∥2
p→ 0,

the CMT implies that

∥β̂∗
f,v −βf,v∥2

1

ng

n∑
i=1

1{Gi = g}Xi,vX
⊤
i,v

p→ 0.

Since the upper-bound of Eq. 4 converges in probability to 0, so, too, must Eq. 4 itself.
The CMT then implies that

δ̂
(
Dv, β̂

∗
f,v

)
p∗

→ δf,v,(5)

where δf,v denotes the observable population-level differential prediction errors in validation
period v under model specification f ∈ F , as in Eq. 8 of the manuscript. That is, Eq. 5 states
that, for all ε > 0,

∗
Pr
(∣∣∣δ̂(Dv, β̂

∗
f,v

)
− δf,v

∣∣∣≤ ε
)

p→ 1,(6)

for all (f, v) ∈ F ×V .
Now turning to Step 3, define vf as the validation period with the greatest population-

level absolute difference in expected prediction errors under model f . Since Eq. 6 holds for
all ε > 0, we can pick an ε > 0 that satisfies two conditions in Eq. 7 and Eq. 8: For all f ∈ F ,

|δ(f,vf )| − ε > |δ(f,v)|+ ε for all v ∈ {V \ vf}(7)

and

|δ(f†,vf† )| − ε < |δ(f,vf )|+ ε for all f ∈ {F \ f †}.(8)

With ε > 0 satisfying Eq. 7 and Eq. 8, it follows that the event contained within the prob-
ability limit statement in Eq. 6, i.e.,∣∣∣δ̂(Dv, β̂

∗
f,v

)
− δf,v

∣∣∣≤ ε for all (f, v) ∈ F ×V ,(9)
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implies the event that

f † = argmin
f∈F

max
v∈V

δ̂
(
Dv, β̂

∗
f,v

)
.(10)

Hence, Eq. 6 implies that

∗
Pr

(
f † = argmin

f∈F
max
v∈V

δ̂
(
Dv, β̂

∗
f,v

))
p→ 1,(11)

thereby completing the proof.

1.5. Proof of Proposition 3.

PROOF. First, note that

δ̂
(
Dt, β̂f,t

)
p→ δf,t

for all (f, t) ∈ F ×T , where T := {1, . . . , T}. Then, by reasoning analogous to that in Eq. 7
of Lemma 1’s proof and the CMT, it follows that

∆̂
(
D, β̂f ,M

)
p→ δf,T ±Mmax

v∈V
|δf,v|

for all f ∈ F . Finally, Lemma 1 and the law of total probability imply that p̂f
p→ 0 as n→∞

for all f ∈
{
F \ f †}, which, along with another application of the CMT, implies that

ÊF |D

[
∆̂
(
D, β̂,M

)]
p→ δf†,T ±Mmax

v∈V
|δf†,v|,

thereby completing the proof.
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2. Existing models as special cases (or not). Our proofs each follow the steps sketched
out below.

1. Use the design’s identification assumptions to re-express the treated and comparison
groups’ untreated potential outcomes (in expectation) in the post-period, EP [YT (0) |G= 1]
and EP [YT (0) |G= 0].

2. Write the prediction errors in treated and comparison groups (in expectation):
a) First, use Assumption 1 of the manuscript to substitute untreated potential outcomes

for any observed outcomes in the argument Xt to the prediction model, f .1

b) Next, take expectation (with respect to the identification assumptions) of the prediction
models in each group, EP [f (XT ) |G= 1] and EP [f (XT ) |G= 0].

c) Finally, compute the differential prediction error (in expectation),

EP [YT (0)− f (XT ) |G= 1]− EP [YT (0)− f (XT ) |G= 0] .

3. Show that this is equal to 0, thereby implying Assumption 2 in the manuscript and, con-
sequently, the identified estimand in Eq. 5 of the manuscript.

2.1. Difference-in-Differences. If the prediction function is

(12) f(Xt) = Yt−1,

then Assumption 2 of the manuscript will be true whenever parallel trends holds.
First, use parallel trends in Eq. 6 of the manuscript to write the treated and comparison

groups untreated potential outcomes (in expectation) in the post-treatment period as

EP [YT (0) |G= 1] = EP [YT−1(0) |G= 1] + (EP [YT (0) |G= 0]− EP [YT−1(0) |G= 0])

EP [YT (0) |G= 0] = EP [YT−1(0) |G= 0] + (EP [YT (0) |G= 1]− EP [YT−1(0) |G= 1]) .

Next, using Assumption 1 of the manuscript, the expectations of the prediction model in
Eq. 19 of the manuscript in each group are

EP [f(XT ) |G= 1] = EP [YT−1(0) |G= 1]

EP [f(XT ) |G= 0] = EP [YT−1(0) |G= 0] .

Hence, the differential prediction error (in expectation) is

EP [YT (0) |G= 0]− EP [YT−1(0) |G= 0]− (EP [YT (0) |G= 1]− EP [YT−1(0) |G= 1]) ,

which is equal to 0 by parallel trends in Eq. 6 of the manuscript. Hence, Assumption 2 of the
manuscript also holds.

2.2. Two-way Fixed Effects. If the prediction function is

(13) f(Xt) = argmin
αu

t−1∑
l=1

(Yu,l − αu)
2 ,

then Assumption 2 of the manuscript will be true whenever the TWFE structural model in
Eq. 7 of the manuscript holds.

1Since the prediction model can only use pre-treatment outcomes, any outcomes in Xt are untreated potential
outcomes.
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First, the structural model in Eq. 7 of the manuscript yields the following untreated poten-
tial outcomes (in expectation) in the post-period:

EP [Yu,T (0) |Gu = 1] = EP [αu |Gu = 1] + γT

EP [Yu,T (0) |Gu = 0] = EP [αu |Gu = 0] + γT .

The prediction model in Eq. 13 is simply each unit’s average outcome in the pre-period,

f (XT ) = argmin
αu

T−1∑
t=1

(Yu,t − αu)
2 =

1

(T − 1)

T−1∑
t=1

Yu,t,(14)

so substituting Yu,t(0) for the observed outcomes (by Assumption 1 of the manuscript) and
taking expectations with respect to the structural model in Eq. 7 of the manuscript yields

EP [f (XT ) |Gu = 1] = EP [αu |Gu = 1] +

(
1

T − 1

) T−1∑
t=1

γt

EP [f (XT ) |Gu = 0] = EP [αu |Gu = 0] +

(
1

T − 1

) T−1∑
t=1

γt.

By substitution, we write the differential prediction error (in expectation) in period T as

EP [Yu,T (0)− f (XT ) |Gu = 1]− EP [Yu,T (0)− f (XT ) |Gu = 0]

=

(
EP [αu |Gu = 1] + γT − EP [αu |Gu = 1]−

(
1

T − 1

) T−1∑
t=1

γt

)

−

(
EP [αu |Gu = 0] + γT − EP [αu |Gu = 0]−

(
1

T − 1

) T−1∑
t=1

γt

)
,

which is equal to 0, thereby implying Assumption 2 of the manuscript.
Thus, the popular TWFE structural model implies our identification condition when the

prediction function is OLS with unit fixed effects. This result would still hold if one were to
fit both unit and time fixed effects, but doing so is unnecessary because the latter are constant
across units and, hence, eliminated by the treated-minus-control difference between groups.

On the other hand, other structural models require more careful thought about the ap-
propriate prediction function. For example, with a unit- or group-specific linear time trend
model, use of the prediction function in Eq. 13 would not imply equal expected prediction
errors. However, using the OLS analog of the same linear time trend model would. Other
models, such as that of interactive fixed effects, typically used to justify the synthetic control
method (Abadie, Diamond and Hainmueller, 2010), have no clear corresponding prediction
function that implies equal expected prediction errors. This should be unsurprising since the
synthetic control design, which is based on a treated-versus-control contrast, is outside our
scope of controlled pre-post designs.

Embedding potential outcomes in structural models or specific parametric distributions
can provide intuition about when equal expected prediction errors holds. However, our iden-
tification condition does not require such assumptions. The prediction functions, which may
or may not use OLS, should be interpreted as just that — algorithms without the assump-
tions of corresponding structural models. This approach to prediction models is common in
design-based settings wherein randomness stems from either an assignment (Rosenbaum,
2002; Sales, Hansen and Rowan, 2018) or sampling (Huang et al., 2023) mechanism.
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2.3. Sequential DID. Sequential DID relies on a parallel-trends-in-trends assumption in
which each group’s average outcome in period T − 1 plus the group’s change in average
outcomes from periods T − 2 to T − 1 is equal to each group’s expected untreated potential
outcome (Mora and Reggio, 2012, 2019; Egami and Yamauchi, 2023; Lee, 2016; Olden and
Møen, 2022). We formally write parallel trends-in-trends as

Parallel trends-in-trends :=

EP [YT (0) |G= 1]− EP [YT−1(0) |G= 1]− (EP [YT (0) |G= 0]− EP [YT−1(0) |G= 0]) =

EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1]− (EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0]) .

(15)

This can be generalized to K time-wise differences (see, e.g., Lee, 2016), but for simplicity,
we focus on K = 2.

If the prediction function is

(16) f(Xt) = Yt−1 + (Yt−1 − Yt−2) for t= 3, . . . , T,

then Assumption 2 of the manuscript will be true whenever Eq. 15 holds.
First, parallel trends-in-trends in Eq. 15 implies that

EP [YT (0) |G= 1] = (EP [YT−1(0) |G= 1] + EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1]) + EP [YT (0) |G= 0]

− (EP [YT−1(0) |G= 0] + EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0])

EP [YT (0) |G= 0] = (EP [YT−1(0) |G= 0] + EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0]) + EP [YT (0) |G= 1]

− (EP [YT−1(0) |G= 1] + EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1]) .

Then the prediction function in Eq. 16 and Assumption 1 of the manuscript imply that

EP [f(XT ) |G= 1] = EP [YT−1(0) |G= 1] + EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1] and

EP [f(XT ) |G= 0] = EP [YT−1(0) |G= 0] + EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0] ,

which implies that the expected prediction errors in each group are

EP [YT (0) |G= 1]− EP [f(XT ) |G= 1] =− (EP [YT−1(0) |G= 0] + EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0])

EP [YT (0) |G= 0]− EP [f(XT ) |G= 0] =− (EP [YT−1(0) |G= 1] + EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1]) .

Therefore, the difference in expected prediction errors is

(EP [YT−1(0) |G= 1] + EP [YT−1(0) |G= 1]− EP [YT−2(0) |G= 1])

− (EP [YT−1(0) |G= 0] + EP [YT−1(0) |G= 0]− EP [YT−2(0) |G= 0]) ,

which parallel trends-in-trends in Eq. 15 implies is equal to 0, thereby completing the proof.

2.4. Unit- or group-specific time trends. In contrast to methods that assume similar time
dynamics in treated and comparison groups, comparative interrupted time series (CITS)
methods explicitly model differential time trends in the two groups. A fully linear implemen-
tation measures changes in intercepts and slopes across the two groups, but a more flexible
version of CITS measures period-by-period differences from an extrapolated linear trend in
each individual or group (Riccio and Bloom, 2002; Bloom and Riccio, 2005).

Like two-way fixed effects (TWFE), this method assumes a parametric structural model
for the untreated potential outcomes

(17) Yt(0) = ξut+ γt + ϵu,t,

where ξu is the linear time slope of the uth unit and E[ϵu,t | ξu,Gu] = 0 for all u= 1, . . . ,U
and t= 1, . . . , T . With this model, we can show that there exists a prediction function such
that when Eq. 17 holds, equal expected prediction errors holds also.
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If the prediction function is

f(Xt) = ξ̂ut where ξ̂u = argmin
ξu

t−1∑
l=1

(Yu,l − ξul)
2 ,(18)

then Assumption 2 of the manuscript will hold whenever the structural model in Eq. 17 is
true.

First, the structural model in Eq. 17 implies that

EP
[
Yu,T (0) |Gu = 1

]
= EP [ξuT |Gu = 1] + γT

EP
[
Yu,T (0) |Gu = 0

]
= EP [ξuT |Gu = 0] + γT .

Second, note that the solution to the empirical risk minimization problem for ξu in periods
before T is

ξ̂u =

T−1∑
t=1

tYu,t

T−1∑
t=1

t2
,

which, from the linear time trend model in Eq. 17, can be expressed as

ξ̂u =

T−1∑
t=1

t
(
ξut+ γt + ϵu,t

)
T−1∑
t=1

t2

= ξu +

T−1∑
t=1

tγt

T−1∑
t=1

t2
+

T−1∑
t=1

tϵu,t

T−1∑
t=1

t2
.

It follows further that the prediction for unit u in period T is

f(Xu,T ) = ξ̂uT

= ξuT +


T−1∑
t=1

tγt

T−1∑
t=1

t2

T +


T−1∑
t=1

tϵi,t

T−1∑
t=1

t2

T.

Then, due to the structural model in Eq. 17 and since all t= 1, . . . , T are fixed constants, it
follows that

EP
[
f(Xu,T ) |Gu = 1

]
= EP [ξuT |Gu = 1] +


T−1∑
t=1

tγt

T−1∑
t=1

t2

T

EP
[
f(Xu,T ) |Gu = 0

]
= EP [ξuT |Gu = 0] +


T−1∑
t=1

tγt

T−1∑
t=1

t2

T.

Finally, the model in Eq. 17 implies that the difference in expected prediction errors is equal
to 0:

EP
[
Yu,T (0)− f(Xu,T ) |Gu = 1

]
−
(
EP
[
Yu,T (0)− f(Xu,T ) |Gu = 0

])
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= EP [ξuT |Gu = 1] + γT − EP [ξuT |Gu = 1]−


T−1∑
t=1

tγt

T−1∑
t=1

t2

T

−

EP [ξuT |Gu = 0] + γT − EP [ξuT |Gu = 0]−


T−1∑
t=1

tγt

T−1∑
t=1

t2

T


= 0,

where the last line follows from the fact that t and γt are always equal across units.
A complementary question is, as a reviewer wondered, “whether it is possible for non-

parametric identification to not hold, but the proposed assumption to hold." Indeed, we can
use the structural model above to illustrate such a case. Suppose the true structural model
is CITS as implemented by Bloom and Riccio (2005), which is equivalent to a flexible
difference-in-differences (DID) specification that uses time fixed effects and group-specific
linear trends (Fry and Hatfield, 2021). The nonparametric parallel trends assumption in Eq. 6
of the manuscript, clearly will not hold because the truth is differential trends in the two
groups. However, Assumption 2 of the manuscript will still hold for the prediction function
that incorporates differential trends in the two groups into its predictions.

2.5. Lagged dependent variable model. Lagged dependent variable (LDV) models incor-
porate across-time dependence of outcomes within units. In political science, authors have
debated the merits of autoregressive distributed lag (ADL) models that include lags of both
outcomes and treatments (Beck and Katz, 2011). The relationship between lags of treatment
and lags of the outcome is complicated by a classic observation about the bias of unit fixed
effects in autoregressive models (Nickell, 1981). Thus, one recent comparison across model
specifications argued that LDV models should use first differences (Griffin et al., 2021). Other
authors have argued for a specification that includes the full vector of pre-treatment outcomes
(like a regression analog of synthetic controls) (O’Neill et al., 2016). Other authors have em-
phasized the causal assumptions, including whether past treatments can affect current out-
comes and whether past outcomes can affect current treatment (Imai and Kim, 2019), the
problem of conditioning on post-treatment outcomes (Blackwell and Glynn, 2018), and the
relationship between the causal assumptions of DID and methods that, like LDV, condition
on past outcomes (Ding and Li, 2019).

As with the approaches above, we focus on a basic implementation of LDV methods that
uses a structural model for the untreated potential outcomes

(19) Yt(0) = γt + λYt−1(0) + ϵt,

where λ is a parameter that controls the strength of the dependence and EP [ϵt] = 0 for
t = 1, . . . , T .2 Notice that this resembles the two-way fixed effects model of Eq. 7 of the
manuscript, but instead of unit-level (time-invariant) fixed effects, it includes unit-level de-
pendence on past outcomes. Then we assume a form of exogeneity conditional on past out-
comes,

(20) Exogeneity conditional on past outcomes := EP [ϵt | Yt−1, Yt−2, . . . , Y1,G] = 0 .

2We could generalize this to dependence on outcomes with lag 2, 3, etc. We use lag-1 outcome dependence
for simplicity.
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There exists a prediction function such that when Eqs. 19 and Eq. 20 both hold, so does equal
expected prediction errors.

If the prediction function is

f(Xt) = λ̂Yt−1 where λ̂= argmin
λ

t−1∑
l=2

(
Ỹl − λỸl−1

)2
,(21)

where Ỹt := Yt − EP [Yt] for all t= 1, . . . , T , then Assumption 2 of the manuscript will hold
whenever the outcome model in Eq. 19 and exogeneity in Eq. 20 are true.

First, note that the structural model in Eq. 19 implies that

EP [YT (0) |G= 1] = EP [λYT−1(0) |G= 1] + γT

EP [YT (0) |G= 0] =E [λYT−1(0) |G= 0] + γT .

Second, the solution to the empirical risk minimization problem for λ in periods before T
is

λ̂=

T−1∑
t=2

Ỹt−1Ỹt

T−1∑
t=2

Ỹ 2
t−1

.(22)

Given the equivalent representation of the LDV model in Eq. 19 in which outcomes, predic-
tors and the error term are centered by their means across units for each time period (Kropko
and Kubinec, 2020), the solution to the empirical risk minimization problem in Eq. 22 can be
expressed as

λ̂= λ+

T−1∑
t=2

Ỹt−1ϵ̃t

T−1∑
t=2

Ỹ 2
t−1

.

It follows that the prediction in period T is

f(XT ) = λ̂YT−1

= λYT−1 +


T−1∑
t=2

Ỹt−1ϵ̃t

T−1∑
t=2

Ỹ 2
t−1

YT−1,

which exogeneity in Eq. 20 then implies has expectations in treated and control groups equal
to

EP [f(XT ) |G= 1] = λEP [YT−1 |G= 1]

EP [f(XT ) |G= 1] = λEP [YT−1 |G= 0] .

The LDV model in Eq. 19 further implies that the expected prediction errors in treated and
comparison groups are

EP [YT (0) |G= 1]− EP [f(XT ) |G= 1] = γT + λEP [YT−1 |G= 1]− λEP [YT−1 |G= 1] = γT

EP [YT (0) |G= 0]− EP [f(XT ) |G= 0] = γT + λEP [YT−1 |G= 0]− λEP [YT−1 |G= 0] = γT .

It then follows immediately that the difference in expected prediction errors is equal to 0,
thereby completing the proof.
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2.6. Synthetic controls. Suppose that we are studying a single treated unit (denote it
u= 1 without loss of generality). The synthetic control weights, denoted by wu for unit u, is
the solution to a regularized minimization of the mean squared difference between the treated
unit’s outcome and the weighted average of the control outcomes at each pre-period time,

1

T − 1

T−1∑
t=1

(
Y1,t −

1

N − 1

N∑
u=2

wuYu,t

)2

.

(This is slightly simplified because it omits the penalty term.) The synthetic control estimator,
as originally proposed by Abadie (2005), is simply

Y1,T − 1

U − 1

U∑
u=2

wuYu,T ,(23)

where u= 2, . . . ,U are the comparison units.
What is the identifying assumption of synthetic controls? As far as we can tell, synthetic

controls began with an estimation method and then invoked a structural model (interactive
fixed effects) that would justify that estimator. However, for our purposes, write the the dif-
ference in conditional expectations of the first two terms of Eq. 23 as

EP [Y1,T |G1 = 1]− EP

[
1

U − 1

U∑
u=2

wuYu,T |Gu = 0

]
,(24)

which would be equal to the ATT in Eq. 1 of the manuscript whenever

EP [YT (0) |G= 1] = EP

[
1

U − 1

U∑
u=2

wuYu,T |Gu = 0

]
.(25)

The identification condition in Eq. 25 illustrates that synthetic controls is outside the scope of
our “predict, correct” paradigm. Neither the treated nor comparison group draws on past data
within groups to predict future untreated outcomes. This makes sense because the synthetic
control method involves only a treated-vs-comparison contrast, not a pre-vs-post contrast.
The pre-period’s only contribution in synthetic controls is to inform the weights. When we
try to fit synthetic controls into our “predict, correct” paradigm, we find that it involves only
the correction step without the prediction step.

Nevertheless, synthetic control weights may still be useful if we believe that weighting
by similarity on pre-period outcomes helps us select a more suitable comparison group. We
can weight as a pre-processing step, then apply our methods to the weighted combination
of comparison units. Others have combined DID and synthetic controls (e.g., Arkhangelsky
et al., 2021), and we envision this to be a fruitful topic for further research.

2.7. Interactive fixed effects. We now use an interactive fixed effects (IFE) structural
model to demonstrate an example (inspired by a reviewer) in which a parametric structural
model holds, but, given a specific prediction function, equal expected prediction errors in
Assumption 2 of the manuscript does not. Here we show that the prediction model (corre-
sponding to TWFE) in Eq. 20 of the manuscript does not imply equal expected prediction
errors when the structural model is that of interactive fixed effects — an unsurprising result
given that the interactive fixed effect model implies that time shocks differ between treated
and comparison groups. That said, our argument below does not rule out the possibility that
another prediction function could be found that does imply equal expected prediction errors
(perhaps drawing upon Liu, Wang and Xu, 2024); however, it is unclear whether such an
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appropriate prediction function would conduct the “predict” step from pre-period data within
groups, in accordance with controlled pre-post designs to which our argument pertains.

Suppose untreated potential outcomes are generated by an interactive fixed effects struc-
tural model,

Yu,t(0) = αu + γt + νuFt + ϵu,t,(26)

where νu is an unobserved, unit-specific “loading” of the unobserved common factor, Ft,
and EP [ϵu,t | αu, νu,Gu] = 0 for all u= 1, . . . ,U and t= 1, . . . , T . Taking expectations, the
treated and comparison groups’ expected untreated potential outcomes in the post-treatment
period are

EP [Yu,T (0) |Gu = 1] = EP [αu |Gu = 1] + γT + EP [νuFt |Gu = 1]

EP [Yu,T (0) |Gu = 0] = EP [αu |Gu = 0] + γT ++EP [νuFt |Gu = 0] .

Consider the prediction function in Eq. 20 of the manuscript, which is simply each unit’s
average outcome prior to t:

argmin
αu

t−1∑
l=1

(Yu,l − αu)
2 =

1

(t− 1)

t−1∑
l=1

Yu,l.(27)

With this prediction function, the prediction in period T is

f(XT ) =
1

(T − 1)

T−1∑
t=1

Yu,t,

which, by the consistency assumption in Eq. 2 of the manuscript, is

f(XT ) =
1

(T − 1)

T−1∑
t=1

Yu,t(0).

The IFE model in Eq. 26 implies that the expectations of the predictions in the treated and
control groups are

EP [f(XT ) |Gu = 1] =
1

(T − 1)

[
T−1∑
t=1

(EP [αu |Gu = 1] + γt + EP [νuFt |Gu = 1])

]

=
1

(T − 1)

[
T−1∑
t=1

EP [αu |Gu = 1] +

T−1∑
t=1

γt +

T−1∑
t=1

EP [νuFt |Gu = 1]

]

= EP [αu |Gu = 1] +
1

(T − 1)

T−1∑
t=1

γt +
1

(T − 1)

T−1∑
t=1

EP [νuFt |Gu = 1]

and

EP [f(XT ) |Gu = 0] = EP [αu |Gu = 0] +
1

(T − 1)

T−1∑
t=1

γt +
1

(T − 1)

T−1∑
t=1

EP [νuFt |Gu = 0] .

The IFE model in Eq. 26 also implies the expected prediction errors in each group are

EP
[
Yu,T (0) |Gu = 1

]
− EP [f(XT ) |Gu = 1] = EP [αu |Gu = 1] + γT + EP [νuFT |Gu = 1]

−

(
EP [αu |Gu = 1] +

1

(T − 1)

T−1∑
t=1

γt



13

+
1

(T − 1)

T−1∑
t=1

EP [νuFt |Gu = 1]

)

= γT −
T−1∑
t=1

γt + EP [νuFT |Gu = 1]−
T−1∑
t=1

EP [νuFt |Gu = 1]

and

EP
[
Yu,T (0) |Gu = 0

]
− EP [f(XT ) |Gu = 0] = EP [αu |Gu = 0] + γT + EP [νuFT |Gu = 0]

−

(
EP [αu |Gu = 0] +

1

(T − 1)

T−1∑
t=1

γt

+
1

(T − 1)

T−1∑
t=1

EP [νuFt |Gu = 0]

)

= γT −
T−1∑
t=1

γt + EP [νuFT |Gu = 0]−
T−1∑
t=1

EP [νuFt |Gu = 0] .

Taking the difference in expected prediction errors yields

EP [νuFT |Gu = 1]− EP [νuFT |Gu = 0]− 1

T − 1

(
T−1∑
t=1

EP [νuFt |Gu = 1]− EP [νuFt |Gu = 0]

)
,

which is not necessarily equal to 0.
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3. Joint Variance-Covariance matrix for Bayesian model selection. The estimated
(cluster-robust) variance-covariance matrix for all coefficients across all models and all vali-
dation periods is

Σ̂V :=

 Σ̂(f1,v1),(f1,v1) . . . Σ̂(f1,v1),(f|F|,V )
...

. . .
...

Σ̂(f|F|,V ),(f1,v1) . . . Σ̂(f|F|,v|V|),(f|F|,V )

 ,(28)

where Σ̂(f,v),(f ′,v′) is the cluster-robust variance-covariance matrix between any two model-
year pairs from F × V and the elements in the set of candidate models, F , are denoted by
f1, f2, . . . , f|F|.

In accordance with the usual sandwich formula, Σ̂(f,v),(f ′,v′) can be decomposed into its
“bread” and “meat” components. The “bread” matrix for any (f, v) ∈ F ×V is

B(f,v) :=
(
X⊤

f,<vXf,<v

)−1
(29)

in which Xf,<v is the n(v − 1) ×Kf model matrix for f in periods before v, where Kf

is model f ’s number of coefficients. For the “meat” component, first let ef,i,<v denote the
(v − 1)× 1 vector of unit i’s prediction errors (residuals) under model f for periods before
v. Also let Xf,i,<v be the (v − 1)×Kf model matrix under model f for unit i in periods
before v. Now we can write the “meat” matrix between any two model-year pairs in F × V
(clustered at the unit level) as

M(f,v),(f ′,v′) :=

n∑
i=1

(
X⊤

f,i,<vef,i,<v

)(
e⊤f ′,i,<v′Xf ′,i,<v′

)
.(30)

Putting together the “breads” and the “meat” for any two elements from F × V and then
multiplying by the usual small sample adjustment factor (originally derived in Hansen, 2007)
results in

Σ̂(f,v),(f ′,v′) :=

(
n

n− 1

)
B(f,v)M(f,v),(f ′,v′)B(f ′,v′).(31)

This estimated (cluster robust) variance-covariance for any two elements from F × V in
Eq. 31 can be equivalently expressed as(

1

n− 1

)(
1

n

n∑
i=1

X⊤
f,i,<vXf,i,<v

)−1(
1

n
M(f,v),(f ′,v′)

)(
1

n

n∑
i=1

X⊤
f ′,i,<v′Xf ′,i,<v′

)−1

,

from which it is straightforward to see that Eq. 31 converges in probability to 0 as n increases
indefinitely, as does the overall (cluster robust) variance-covariance in Eq. 28.
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4. Conceptual diagram of estimation process. Fig. 1 provides a conceptual diagram
of the overall estimation process. All of the mathematical quantities in Fig. 1 are defined in
the manuscript. However, to reiterate, the index s = 1, . . . , S runs over the posterior draws
from N

(
β̂V ,̂ΣV

)
. In addition, |δ̂‡(s)f | denotes the largest absolute differential prediction

error for model f over all validation periods, V , where V := maxV , under the sth draw from
N
(
β̂V ,̂ΣV

)
. The optimal model under the sth draw is denoted by f †(s). The elements in the

set of candidate models, F , are denoted by f1, f2, . . . , f|F|. All other quantities — namely,

∆̂(D, β̂,M), ÊF |D

[
∆̂
(
D, β̂,M

)]
and p̂f — are as defined in Eqs. 14, 15 and 16 of the

manuscript.

∣∣∣δ̂(s)f1,v1

∣∣∣ · · ·
∣∣∣δ̂(s)f1,V

∣∣∣ ∣∣∣δ̂‡(s)f1

∣∣∣
∣∣∣δ̂(s)f|F|,v1

∣∣∣ · · ·
∣∣∣δ̂(s)f|F|,V

∣∣∣ ∣∣∣δ̂‡(s)f|F|

∣∣∣
...

...

max
v∈V

max
v∈V

argmin
f∈F

f†(s)

Σs

p̂f1

Σs
p̂f|F|

∆̂(D, β̂f1 ,M)

∆̂(D, β̂f|F| ,M)

...
...

Σf

ÊF|D[∆̂(D, β̂,M)]

Differential
prediction errors

Optimal
model

Model
probability

Interval
estimate

Model
averaged estimate

FIG 1. Averaged Prediction Models (APM) estimation process
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5. Model implementation in the applied analysis. Table 1 below lists all model spec-
ifications in our applied analysis.

TABLE 1
Candidate prediction models used in the analysis of Missouri’s repeal of permit-to-purchase.

Baseline Mean Yt ∼ β0
Baseline Mean (log) log(Yt)∼ β0
Baseline Mean (first diff) Yt − Yi,t−1 ∼ β0
Lin Time Trend Yt ∼ β0 + β1t
Lin Time Trend (log) log(Yt)∼ β0 + β1t
Lin Time Trend (first diff) Yt − Yi,t−1 ∼ β0 + β1t

Quad Time Trend Yt ∼ β0 + β1t
2

Quad Time Trend (log) log(Yt)∼ β0 + β1t
2

Quad Time Trend (first diff) Yt − Yi,t−1 ∼ β0 + β1t
2

LDV Yt ∼ β0 + β2Yi,t−1
LDV (log) log(Yt)∼ β0 + β2 log(Yi,t−1)
LDV (first diff) Yt − Yi,t−1 ∼ β0 + β2Yi,t−1
Lin Time Trend + LDV Yt ∼ β0 + β1t+ β2Yi,t−1
Lin Time Trend + LDV (log) log(Yt)∼ β0 + β1t+ β2 log(Yi,t−1)
Lin Time Trend + LDV (first diff) Yt − Yi,t−1 ∼ β0 + β1t+ β2Yi,t−1

Quad Time Trend + LDV Yt ∼ β0 + β1t
2 + β2Yi,t−1

Quad Time Trend + LDV (log) log(Yt)∼ β0 + β1t
2 + β2Yi,t−1

Quad Time Trend + LDV (first diff) Yt − Yi,t−1 ∼ β0 + β1t
2 + β2Yi,t−1
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6. Simulation Studies. We conduct several simulation studies to assess the performance
of our Bayesian model averaged (BMA) estimator. We use the same simulation setup as
Schell, Griffin and Morral (2018). This setup is especially compelling in a setting related
to gun policy, and for that reason has been adopted in closely related simulation studies
(Antonelli and Beck, 2023).

The simulation setup from Schell, Griffin and Morral (2018) consists of crude death rates
in all 50 states in each year from 1979 to 2014. We focus on years 1994 to 2008 and suppose
that 2008 is the only post-treatment year. Akin to our application in Sec. 5 of the manuscript,
we let the years 1994 to 1998 serve as training years and let 1999 to 2007 serve as validation
years. We randomly select 5 states to serve as “treated,” which begins in 2008. The remaining
45 states are the “comparison” states.

We consider a class of 5 candidate models: (1) baseline mean, Yt ∼ β0, (2) LDV, i.e.,
AR(1), Yt ∼ β0+β2Yt−1, (3) baseline mean (first diff), Yt−Yt−1 ∼ β0, (4) linear trend, Yt ∼
β0+β1t and (5) linear time trend (first diff), Yt−Yt−1 ∼ β0+β1t. Performing our procedure
on the population of 5 treated stated and 45 comparison states shows that model (2), the
AR(1) model, minimizes our sensitivity criterion (i.e., the worst-case absolute prediction
error in the pre-treatment validation periods).

To conduct our simulations, we treat the 5 treated states and 45 control states as the pop-
ulation of interest and consider properties of our BMA estimator over 1,000 random draws
with replacement of states from this population. For each draw, we sample with replacement
a fixed number from the distribution of treated states and a fixed number from the distribution
of control states. This sampling corresponds to the standard assumption of independent and
identically distributed (i.i.d.) random sampling of units (in this case states) within groups.

Over each realization of sample data, we record the posterior probability that each of the
5 candidate models is most robust. We also record the BMA estimates of the ATT and its
lower and upper bounds (with M = 1). For each realization of sample data, we also record
the estimated variance for the ATT estimator, as well as for the estimators of the ATT’s lower
and upper bounds. For each of these three targets, we construct 95% confidence intervals via
a Normal approximation in which the lower bound is the BMA estimate minus 1.96 multi-
plied by the square root of the estimated variance. The upper bound of the 95% confidence
interval is constructed analogously. A confidence interval covers the target if it brackets the
population-level quantity for period T under the truly optimal model in the population. The
bias of the BMA estimator also refers to this target.

We conduct our simulations under an increasing number of sampled units, holding the ratio
of treated to control units fixed. We begin with 1 treated unit and 8 controls, which mirrors
the setting of our application in Sec. 5 of the manuscript. We then increase the number of
treated units to 3, 15, 35, 50, 500 and 2,000 with 24, 120, 280, 400, 4,000 and 16,000 control
units, respectively.

Fig. 2 below shows the proportion of the 1,000 simulations in which the optimal model in
the population, the AR(1) model, has the greatest posterior probability.
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Proportion of Simulations in which Optimal Model Has Greatest Posterior Probability

FIG 2. The proportion of 1,000 simulation replications in which the optimal model in the population receives
the highest posterior probability. Each bar corresponds to a different sample size configuration, and values are
labeled above each bar.

The truly optimal model receives the greatest posterior probability in a majority of the 1,000
simulations, even when the sample size is only 9 states. For the largest sample size, 2,000
treated states and 16,000 control states, the truly optimal model receives the greatest posterior
probability in effectively all of the 1,000 simulations.

Fig. 3, which paints a similar picture, illustrates the expected posterior probability (over
all 1,000 simulations) for each sample size.
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FIG 3. Expected posterior probabilities of candidate models across simulation settings. Each panel corresponds
to a different sample size configuration. Bars show the mean posterior probability assigned to each model across
1,000 simulations, and error bars indicate the 2.5th and 97.5th percentiles of posterior probabilities across
simulations. Horizontal dashed lines mark the maximum possible posterior probability (1).

As Fig. 3 shows, the truly optimal model tends to receive the highest posterior probability
across simulation settings. While there is some variability in this probability — particularly
in smaller samples — the distinction between the optimal model and others becomes more
pronounced as sample size increases. In the largest sample, the optimal model’s expected
posterior probability reaches 0.95, with 95% simulation intervals that no longer overlap with
those of competing models. Hence, Fig. 3 demonstrates the intuition of Lemma 1 in which
the truly optimal model’s posterior probability converges in probability to 1 as the sample
size increases.

Nevertheless, in this simulation setting, the high variance in the optimal model’s posterior
probability — including at the largest sample size — suggests that the rate of convergence
described in Lemma 1 may be slow. At the largest sample size, the 95% simulation interval for
the posterior probability ranges from 0.62 to 1. Hence, quite large samples may be required
for the posterior probability to concentrate tightly near 1 with high probability.

We now report the absolute percent bias of the BMA estimator (Fig. 4) followed by the
ratio of the expected estimated variance to the variance across simulations (Fig. 5).
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FIG 4. The absolute percent bias of the estimator of the ATT, lower bound, and upper bound, relative to their
respective population-level values for period T under the truly optimal model in the population. Each bias value
reflects the absolute deviation of the estimator from its target, expressed as a percentage of the absolute value of
the population ATT. Numeric values are shown above each bar, and each panel corresponds to a different sample
size configuration.

As we would expect, bias is substantial in small samples. However, as sample size increases,
the bias of the estimators for both the ATT and its bounds decreases considerably. In larger
samples, the estimators for all three targets exhibit relatively low bias, indicating more reli-
able inference.

The target ATT and its lower and upper bounds are approximately −0.4, −0.84, and 0.03,
respectively. Because the upper bound is close to zero, even a small absolute bias appears
large when expressed as a percentage of the target. Consequently, the absolute percent bias
for the upper bound remains greater than the absolute percent bias for the ATT and lower
bound in large samples. This difference in percent bias exists even though the absolute bias
is nearly identical across all three targets in large samples.

Fig. 5 shifts focus from the bias of the BMA estimator for the ATT and its bounds to the
accuracy of the procedure used to estimate the BMA estimator’s variance. The figure presents
the ratio of the expected estimated variance to the actual variances (across simulations) of the
BMA estimators for the ATT, its lower bound, and its upper bound.
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FIG 5. The ratio of the expected estimated variance to the empirical variance across simulation replications for the
ATT, its lower bound, and its upper bound. Each panel corresponds to a different sample size configuration. The
dashed horizontal line at 1 denotes exact agreement between the expected estimated variance and the variance
across 1,000 simulations. Each panel corresponds to a different sample size configuration.

In small to moderate sample sizes, the estimated variances systematically overstate the ac-
tual variability, often by substantial margins. As sample size increases, the expected estimated
variances become more closely aligned with the empirical variances across simulations, but
the estimated variances still exceed the actual variances, in expectation. For example, in the
largest sample size (2,000 treated, 16,000 control), the expected estimated variances remain
greater than the actual variances across simulations. This overestimation is consistent with
the conservatism noted by Antonelli, Papadogeorgou and Dominici (2022, p. 103).

Finally, Fig. 6 below illustrates the coverage of 95% confidence bounds for the ATT, its
lower bound, and its upper bound across a range of sample size configurations. In the smallest
samples, coverage is substantially below the nominal level for all components, particularly
for the upper bound. As sample size increases, coverage improves for all three quantities, and
by approximately 15 treated and 120 control units, all 95% confidence intervals are close to
nominal performance.
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FIG 6. The coverage of the 95% confidence interval for the ATT, its lower bound, and its upper bound across 1,000
simulation replications. Each panel corresponds to a different sample size configuration. The dashed horizontal
lines mark the nominal 95% coverage level. Bars represent the proportion of simulations in which the true value
lies within the estimated confidence bounds for each quantity.

As Fig. 6 shows, the 95% confidence bounds achieve coverage at or above the nominal
level across sample sizes ranging from 15 treated and 120 control units to 50 treated and 400
control units. However, coverage dips slightly below the nominal 95% level at a sample size
of 500 treated and 4,000 control units, before recovering and exceeding the nominal level in
the largest sample size of 2,000 treated and 16,000 control units. This pattern underscores that
coverage need not increase monotonically with sample size, but may dip before stabilizing at
or above the nominal level.

The explanation for this pattern is straightforward. The population-level values of the
ATTs lower bound under the two leading models are 0.84 for the AR(1) model and 1.18
for the linear trend (first difference) model. In simulations where the truly optimal model,
AR(1), receives low posterior probability (e.g., below 0.25), the BMA estimate of the ATTs
lower bound is pulled downward due to greater weight being placed on the linear trend (first
difference) model, which has a more negative lower bound.

This downward bias of the BMA estimator when the optimal model’s posterior weight is
low holds across all sample sizes. However, at smaller sample sizes — such as 50 treated
and 400 control units — this bias is offset by the estimator’s larger overall variance, which
results in wider confidence intervals and helps maintain nominal coverage. As the sample
size increases (e.g., to 500 treated and 4,000 control units), the variance of the estimator
decreases, primarily due to reduced sampling variability rather than decreased uncertainty
about which model is optimal. As a result, there are still enough cases in which the optimal
model receives too little posterior weight. In those cases, the BMA estimator remains biased
downward, but the narrower confidence intervals are no longer wide enough to compensate,
leading to undercoverage.

Restoring coverage to at least the nominal level requires a larger sample size — such as
2,000 treated and 16,000 control units — so that uncertainty about which model is optimal is
sufficiently reduced. At this larger sample size, the same issue seen at 500 treated and 4,000
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control units still holds under simulations in which the optimal model receives low posterior
probability: The BMA estimate is pulled downward, and the resulting confidence interval re-
mains too narrow to include the true lower bound under the optimal model. However, because
cases in which the optimal model receives a low posterior weight are rare at this large sample
size, the overall coverage is no longer below the nominal level.
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