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Summary

For a Bayesian agent with beliefs about the relationship between covariates and potential out-
comes, deterministically selecting an assignment that yields optimal covariate balance rationally
dominates randomisation. However, randomisation—by enabling control over the probabilities of
erroneous causal conclusions due to unknown covariate imbalances—offers insurance against the
possibility that an agent’s beliefs may be misleading. For the most part, such rational justifications
for optimum assignment have presupposed the framework of Bayesian inference, while such episte-
mic justifications for randomisation have presupposed the framework of significance testing. In this
paper, I build on a conception of balance that seems inextricable from the significance testing
framework, Fisherian balance, to show that it implies an analogous epistemic justification for
randomisation within the framework of Bayesian inference. Consequently, for the choice between
optimum and random assignment, this paper shows that epistemic justifications need not be wed-
ded to significance testing nor must Bayesian inference be wedded to rational justifications.
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1 Introduction

For a single Bayesian agent in isolation, deterministic selection of an assignment that bal-
ances covariates rationally dominates randomisation given that agent’s prior beliefs about the re-
lationship between covariates and potential outcomes (Bertsimas et al., 2015; Fedorov, 1972;
Harville, 1975; Kallus, 2018; Kasy, 2016; Kiefer, 1959). On the other hand, a range of scholars
have argued that, while randomisation is rationally suboptimal, it offers insurance against the
possibility that one’s prior beliefs may be misleading, that is, that unobserved covariates (poten-
tial outcomes in particular) may be imbalanced between treatment and control groups
(Bai, 2023; Efron, 1971; Harshaw et al., 2024; Nordin & Schultzberg, 2022; Kapelner
et al., 2021; Kapelner et al., 2022; Wu, 1981). This long-standing tension between optimum
and random assignment is known as the balance-robustness tradeoff.
As illustrated by recent debates on the balance-robustness tradeoff (Harshaw et al., 2024;

Johansson et al., 2021; Kallus, 2018; 2020; 2021; Kapelner et al., 2021), randomisation’s
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robustness justification can be derived in large part from R. A. Fisher’s randomisation test
(FRT) established via the Lady tasting tea experiment (Fisher, 1925; 1926; 1935). Building
on both Hall (2007) and Senn (2013), Martinez & Teira (2024) point to the Fisherian anteced-
ents of this robustness justification for randomisation by referring to it as ‘Fisherian balance’
(not to be confused with alternative conceptions of balance justifying optimum assignment).
As Martinez & Teira (2024) explain, Fisherian balance, achieved through randomisation, is
not about obtaining balance, per se, but rather about controlling the probability of erroneous
causal conclusions due to unknown covariate imbalances.

At their core, arguments for deterministic selection of an optimal assignment based on covar-
iate balance stand on rational grounds. By rational, I mean an act that, given an agent’s prior
beliefs, yields the best consequence in expectation, that is, minimises the expected distance be-
tween the unknown causal target and the expected data generated by that act.1 By contrast, ar-
guments for randomisation in terms of controlling the probabilities of erroneous conclusions
due to unknown covariate imbalances stand on epistemic grounds. By epistemic, I mean an act
(e.g., optimum or random assignment) that would lead one to recover the truth in expectation
and with probability that limits to 1 as the size of an experimental population increases
indefinitely.

For the most part, each of these justifications (on epistemic and rational grounds, respec-
tively) presupposes a particular framework for drawing statistical conclusions about causal ef-
fects. Epistemic justifications for the choice between optimum and random assignment usually
presuppose the framework of significance testing. Rational justifications, by contrast, usually
presuppose Bayesian inference. The contribution of this paper is to show that epistemic justifi-
cations in the name of Fisherian balance need not be wedded to significance testing nor must
Bayesian inference be wedded to rational justifications.

To make this contribution, I first engage with a conception of balance, standard in Bayesian
critiques of randomisation (Howson & Urbach, 2006; Urbach, 1985; Worrall, 2002; 2007a;
2008; 2007b), which stipulates that treatment and control groups ought to be the same on covar-
iates that predict potential outcomes. I establish a logical consequence of this argument: If the
means of potential outcomes—themselves baseline covariates—are balanced between treatment
and control groups, then the average of observed outcomes in treatment minus the average of
observed outcomes in control is equal to the average treatment effect (ATE). Expressing this
conception of balance directly in terms of potential outcomes is insightful. Potential outcomes
are unobservable before assignment and only partially observable after; hence, whether any as-
signment yields sufficient balance depends on an agent’s beliefs about fundamentally unobserv-
able quantities. This dependence underscores the importance of Fisherian balance in that, no
matter how many covariates one measures, the possibility of erroneous conclusions due to un-
known covariate imbalances is unavoidable.

Despite the general importance of Fisherian balance, its epistemic value has been understood
almost exclusively within the framework of significance testing. I use Fisher’s Lady tasting tea
—an experiment that seems inextricable from significance testing—to show that Fisherian bal-
ance offers an analogous epistemic justification for randomisation in the framework of Bayesian
inference. In particular, I show that (1) for an agent who is initially neutral about the plausibility
of different causal hypotheses, the hypothesis with the greatest posterior probability is equal to
the truth, in expectation, and (2) under exceedingly mild conditions on an agent’s prior distribu-
tion, so long as an experiment is sufficiently large, false causal hypotheses will receive a low
posterior probability with high probability and the true causal hypothesis will receive a high
posterior probability with high probability. In other words, randomisation implies that an agent
who draws conclusions about causal effects via Bayes’ rule will recover the true effect in a suf-
ficiently large experiment.
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1.1 Related Literature

This paper’s epistemic justification for randomisation in the framework of Bayesian inference
speaks directly to long-standing debates on the role of randomisation for Bayesian inference. In
particular, Rubin (1976, 233) writes that randomisation is important for a Bayesian because it
enables one to ‘ignore the assignment mechanism when making causal inferences’. (See also
Rubin, 1978; 1984.) However, one implication from Ding & Guo (2023) is that this value of
randomisation can be recast as the importance of controlled experimentation (as opposed to un-
controlled observational studies). That is, randomisation implies ‘ignorability’ of the assign-
ment mechanism for Bayesian causal inference; however, as Kasy (2016, Section 5.2) shows,
so too would deterministic selection of an optimal assignment. ‘Ignorability’ fails not in the ab-
sence of randomisation, but rather in observational settings where the assignment mechanism is
unknown. For this reason, Ding & Guo (2023) develop a method incorporating uncertainty over
the assignment process into causal inferences (viz., posterior predictive p-values for tests of
Fisher’s sharp null hypothesis of no effects).
Existing arguments that do speak directly to the specific choice between random and opti-

mum assignment allude to the epistemic value of randomisation for Bayesian inference. For ex-
ample, Senn (1994, 218) writes that ‘randomisation in clinical trials is not an issue which need
divide Bayesians and classical statisticians, though of course they will have different views re-
garding analysis’. Despite such claims, the connections between Fisherian balance and Bayes-
ian inference remain underexplored. Martinez & Teira (2024) argue that Fisherian balance jus-
tifies the decision to randomise, but within the framework of significance testing. In the
framework of Bayesian inference, Martinez & Teira (2024) provide an alternative conception
of balance, which provides a rational—as opposed to epistemic—justification for
randomisation. This alternative conception of balance shifts from the setting of a single
Bayesian agent in isolation to a strategic setting against either ‘nature’ (e.g., Wu, 1981) or an
adversarial audience (Banerjee et al., 2017; Banerjee et al., 2020; Basu, 1980; Kadane &
Seidenfeld, 1990; Lindley, 1982; Savage, 1954; 1962a; 1962b; Stone, 1969; Suppes, 1982).
By contrast, I build on the conception of Fisherian balance from Martinez & Teira (2024) to
show how it offers an epistemic—as opposed to rational—justification for randomisation within
the framework of Bayesian inference.

2 Lady Tasting Tea Experiment

The FRT, which emerged from the Lady tasting tea (Fisher, 1935), is an essential ingredient
of robustness justifications for random assignment (Johansson et al., 2021; Kallus, 2021;
Kapelner et al., 2021). Hence, the Lady tasting tea is a sensible jumping off point for engaging
with notions of Fisherian balance and its role in robustness justifications for random assign-
ment. In his book, The Design of Experiments (1935), Fisher describes the Lady tasting tea ex-
periment as follows:

A lady declares that by tasting a cup of tea made with milk she can discriminate whether the
milk or the tea infusion was first added to the cup. … Our experiment consists in mixing eight
cups of tea, four in one way and four in the other, and presenting them to the subject for judge-
ment in a random order. The subject has been told in advance of what the test will consist,
namely, that she will be asked to taste eight cups, that these shall be four of each kind, and that
they shall be presented to her in a random order, that is in an order not determined arbitrarily by
human choice, but by the actual manipulation of the physical apparatus used in games of
chance, cards, dice, roulettes, etc., or, more expeditiously, from a published collection of ran-
dom sampling numbers purporting to give the actual results of such manipulation. Her task
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is to divide the 8 cups into two sets of 4, agreeing, if possible, with the treatments received
(Fisher, 1935, 13–14).

To formalise the setting of the Lady tasting tea experiment, let the index i ¼ 1; …; N run
over the individual cups with N ¼ 8. Each cup can be assigned to either the tea-first (control)
condition, zi ¼ 0 , or the milk-first (treatment) condition, zi ¼ 1 . The vector z ¼
z1 z2 … zN½ � ⊤ , where the superscript ⊤ denotes matrix transposition, is the collection
ofN individual treatment indicator variables. The set of possible ways a researcher could assign
these N units to treatment or control is f0; 1gN of which there are 2N possibilities. However,

under the assignment process Fisher (1935) describes, there are
8

4

� �
¼ 8!

4!ð8 � 4Þ! ¼ 70 pos-

sible ways in which the experimenter could order the 8 cups such that 4 cups are in the milk-first
(treatment) condition and the remaining 4 cups are in the tea-first (control) condition. I denote
this set of allowable assignments by Ω ⊆ f0; 1gN.

The potential responses of ‘the lady’ are a mapping from f0; 1gN to an N-dimensional vector
of real numbers,ℝN . With 2N assignments, there are 2N corresponding vectors of potential out-
comes. However, under the Stable Unit Treatment Value Assumption (SUTVA) (Cox, 1958;
Rubin, 1980; 1986), let yið1Þ (the treated potential outcome) denote the outcome value of the
ith cup for all z ∈ f0; 1gN with zi ¼ 1. Likewise, let yið0Þ (the control potential outcome) denote
the outcome value of the ith cup for all z ∈ f0; 1gN with zi ¼ 0. Under SUTVA, the collection of
all cups’ treated potential outcomes is equal to the vector of outcomes if all cups had been
assigned to treatment, yð1Þ, and the collection of all cups’ control potential outcomes is equal
to the vector of outcomes if all cups had been assigned to control, yð0Þ. Both yð1Þ and yð0Þ
are baseline covariates in that they are fixed quantities, not changing depending on how the ran-
dom assignment process turns out. Observable outcomes, by contrast, can vary depending on
which assignment happens to be realised; I denote them by yðzÞ for all z ∈ Ω.

Under SUTVA, the collection of N individual effects, τ, is defined as yð1Þ � yð0Þ. The aver-
age of these N individual effects (the ATE) is denoted by τ. When effects are homogeneous, the
causal target is the 1-dimensional, constant effect. When effects are heterogeneous, this causal
target can be interpreted as the 1-dimensional effect that best approximates τ, which, under a
standard Euclidean distance measure, will be the ATE, τ.

The outcome for each cup can be either 0 or 1, denoting whether the ‘lady’ identifies cup i as
either tea-first ð0Þ or milk-first ð1Þ. According to the historical record (Box, 1978, 131 – 135),
the ‘lady’ in question—fellow scientist at the Rothamsted Experimental Station, Muriel Bristol
—correctly identified all of the 8 cups. In accordance with this historical record, suppose (with-
out loss of generality) that z1 ¼ 1 1 1 1 0 0 0 0½ � ⊤ was randomly selected fromΩ
and that the realised data from the experiment were as in Table 1.

Table 1. Results of R. A. Fisher’s Lady tasting tea experiment.

Unit z yðzÞ
1 1 1
2 1 1
3 1 1
4 1 1
5 0 0
6 0 0
7 0 0
8 0 0
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For simplicity and following Rosenbaum (2002), I consider two rival causal hypotheses.
Each causal hypothesis assigns some probability to the observed data, summarised by a test sta-
tistic, based on only the potential outcomes schedule implied by that hypothesis and the known
random assignment mechanism. The first hypothesis is Fisher’s sharp causal hypothesis of no
effects, hereafter referred to as Fisher’s null. The second rival causal hypothesis is that of a pos-
itive effect for each of the 8 cups, that is, the sharp causal hypothesis of Perfect discrimination,
hereafter referred to as Perfect discrimination. Both of these rival causal hypotheses satisfy
SUTVA, which implies that we can write the two potential outcome schedules compactly as
in Table 2.
Both potential outcome schedules imply a 1-dimensional, constant effect for all experimental

units, which is equal to the average of theN individual effects, 0 (under Fisher’s null) and 1 (un-
der Perfect discrimination). One can, of course, test more complex, N -dimensional effects in
which individual effects differ across units. However, as alluded to above, tests of
1-dimensional effects can be interpreted as the single value that best approximates the trueN-di-
mensional vector of individual effects, τ (Rosenbaum, 2010, Section 2.4.4, 44–46).

3 Fisherian Balance

Arguments over the role of balance in experiments typically focus on differences between
treated and control groups in the means of covariates that predict potential outcomes. However,
as Senn (2013, 1447) writes, ‘what really matters is differences in outcome. Differences in co-
variates are only relevant to the extent that they help us predict outcomes we would have seen
between groups in the absence of treatment’. Under SUTVA, treated and control potential out-
comes, yð1Þ and yð0Þ, are baseline covariates, just like any other quantities that are fixed over
allowable assignments. These two covariates, yð1Þ and yð0Þ, have a special status in that balance
in their means suffices for the average difference in observed outcomes between treated and
control groups to be equal to the causal target of interest. Balance in other covariates is mean-
ingful only insofar as such balance suggests that treated and control potential outcomes are bal-
anced between treated and control groups.
To more precisely explicate this point, suppose that the observable data for all N units is

summarised by a 1-dimensional statistic, the canonical Difference-in-Means. The Difference-
in-Means is

τ̂ z; y zð Þð Þ ¼ 1

z⊤ z

� �
z⊤ y zð Þ � 1

1 � zð Þ⊤ 1 � zð Þ

 !
1 � zð Þ⊤ y zð Þ; (1)

Table 2. Potential outcome schedules implied by Fisher’s null and Perfect discrimination.

Fisher’s null Perfect discrimination

Unit yð0Þ yð1Þ τ yð0Þ yð1Þ τ

1 1 1 0 0 1 1
2 1 1 0 0 1 1
3 1 1 0 0 1 1
4 1 1 0 0 1 1
5 0 0 0 0 1 1
6 0 0 0 0 1 1
7 0 0 0 0 1 1
8 0 0 0 0 1 1
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where the ‘hat’ operator denotes functions of observed quantities. Proposition 1 formally estab-
lishes that balance in the means of treated and control potential outcomes implies that the
Difference-in-Means is equal to the ATE (or, equivalently, the 1-dimensional effect that best ap-
proximates τ).

Proposition 1. Suppose SUTVA and, without loss of generality, a set of possible assignments with
a fixed number of n1 ≥ 1 treated units and a fixed number of N � n1 ¼ n0 ≥ 1 control units. For any
assignment in this set that yields balance in the means of both treated and control potential out-
comes, that is,

1

n1

� �
z⊤ y 1ð Þ ¼ 1

n0

� �
1 � zð Þ⊤ y 1ð Þand (2)

1

n1

� �
z⊤ y 0ð Þ ¼ 1

n0

� �
1 � zð Þ⊤ y 0ð Þ; (3)

the Difference-in-Means is equal to the ATE, that is,

τ̂ z; y zð Þð Þ ¼ τ: (4)

The proof of Proposition 1 is in Appendix A. For a simple illustration of this proposition,
consider the Lady tasting tea experiment under two different settings (both of which would
be unbeknownst to the researcher): when Fisher’s null is true and when Perfect discrimination
is true. In both settings, a Difference-in-Means far from the true effect implies large covariate
imbalances in potential outcomes.

As Figure 1 shows, when Perfect discrimination is true, every allowable assignment is per-
fectly balanced in the means of both treated and control potential outcomes. Hence, every

FIGURE 1. Relationship between Difference-in-Means and covariate balance under Fisher’s null and Perfect discrimina-
tion, respectively.
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one of the allowable assignments yields a Difference-in-Means exactly equal to the true
1-dimensional causal effect. By contrast, when Fisher’s null is true, any positive distance be-
tween the Difference-in-Means and the true 1-dimensional effect implies covariate imbalance.2

Proposition 1 relates to the Bayesian conception of balance in Howson & Urbach (2006),
Urbach (1985), (Worrall, 2002; 2007a; 2007b; 2008) and others, whereby treatment and control
groups ought to be the same on prognostic covariates. Proposition 1 recasts this conception of
balance in terms of potential outcomes themselves. In so doing, Proposition 1 bears on an im-
portant argument made by Fisher (1935, 21): ‘It would be impossible to present an exhaustive
list of such possible differences appropriate to any one kind of experiment, because the uncon-
trolled causes which may influence the result are always strictly innumerable’. Proposition 1 im-
plies that the relevant covariates to be balanced are not ‘always strictly innumerable’. In fact,
under SUTVA, there are only two such covariates.
The importance of Fisherian balance is not because the prognostic covariates are ‘always

strictly innumerable’. Rather, Fisherian balance matters because it is impossible to directly
calculate covariate balance in (2) and (3) since both equations contain fundamentally unobserv-
able quantities. Before assignment, no potential outcomes can be observed and, after assign-
ment, treated potential outcomes in the control group and control potential outcomes in the
treated group are unobservable. Consequently, if, for example, one were to observe a difference
in average outcomes between treated and control groups equal to 1, one would be unable to
definitively distinguish between two possibilities: the existence of a causal effect (Perfect dis-
crimination) or the absence of a causal effect (Fisher’s null) and an imbalance in potential
outcomes.
Thus, randomisation’s value is not its ability to yield covariate balance (although

randomisation does so in expectation). Rather, randomisation is valuable because it yields
Fisherian balance. In contrast to a standard conception of balance, Fisherian balance is about
controlling the probability of errors due to unknown imbalances in the relevant covariates or,
as Martinez and Teira (2024, 4) write ‘measuring ex post the influence of uncontrolled
covariates’.
Such control over the probability of errors due to unknown imbalances in the relevant covar-

iates is understood largely against the background of the significance testing framework. Sup-
pose a significance level (i.e. α-level) of 0.05 and a test of Fisher’s null against the alternative
of Perfect discrimination. When Fisher’s null is true, Figure 1 shows that one would erroneously
reject this null if and only if covariate imbalance is large (equal to 1). However, randomisation
implies that the probability of such covariate imbalance is low (1/70 to be exact). When Perfect
discrimination is true, Figure 1 shows that the Difference-in-Means is always equal to the true
causal effect because all allowable assignments yield perfect covariate balance. Since the
Difference-in-Means under Perfect discrimination lies in the rejection region of the
Difference-in-Means’ distribution implied by Fisher’s null, one would never fail to reject
Fisher’s null when Perfect discrimination is true.3

Figure 1 shows that randomisation enables one to control the probabilities of drawing errone-
ous conclusions (i.e. randomisation implies Fisherian balance) within the significance testing
framework. More generally, as Rosenbaum (2002, Chapter 2) shows, randomisation controls
the probability of a type I error (rejecting the null when it is true) and, for a specific class of
alternatives, ensures that a test’s power (rejecting the null when it is false) is always weakly
(and often strictly) greater than a test’s type I error probability. Moreover, as the size of an ex-
periment increases indefinitely, the type I error probability remains at least as small as a test’s
significance level and the power of a test limits to 1.
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Consequently, within the framework of either rejection (1) or not (0) of a null hypothesis,
randomisation ensures that the expected inference (i.e. rejection probability) is greater when
the null hypothesis is false compared with when it is true. Likewise, as the size of an experiment
increases indefinitely, randomisation ensures that the expected inference limits to 1 when the
null hypothesis is false. When the null hypothesis is true, the expected inference in an experi-
ment of any size is always less than the expected inference when the null is false. Thus, within
the framework of significance testing, randomisation stands on solid epistemic ground—that is,
randomisation leads one to recover the truth in expectation and with probability that limits to 1
as the size of an experimental population increases indefinitely.

4 From Significance Testing to Bayesian Inference

One of the primary concerns with significance testing is its coarse decision calculus in which
one either rejects or fails to reject causal hypotheses. This framework enables one to conclude
that a causal hypothesis one rejects is less supported by the evidence than a causal hypothesis
one does not reject. Yet, amongst the hypotheses one rejects or amongst the hypotheses one
fails to reject, the significance testing framework does not enable statements about which hy-
potheses are more plausible given experimental evidence. For example, a null hypothesis with
a p-value slightly above α ¼ 0:05 is no less plausible than a null hypothesis with a p-value much
greater than α ¼ 0:05; both hypotheses are simply those the researcher was unable to reject.
Bayesian inference, by contrast, permits more nuanced inferences by encoding the relative plau-
sibility of each causal hypothesis in terms of a continuous probability measure.

In Section 5, I show that Fisherian balance, implied by randomisation, leads to analogous ep-
istemic properties of inference by a Bayesian. Usually a Bayesian agent is defined as one who
behaves rationally by choosing an act that maximises the expected consequence given that
agent’s prior beliefs. By contrast, I embrace a different conception of a Bayesian—one with a
‘human face’, so to speak (Jeffrey, 1983). That is, for the purposes of this paper, a Bayesian
is simply one who conducts Bayesian inference—that is, updates prior beliefs about causal hy-
potheses via a likelihood implied by the known assignment process.

This type of Bayesian need not embrace axiomatic principles grounded in rational decision
theory (see Ramsey, 1990; 1931; Savage, 1954, and related ‘Dutch book’ arguments). Instead,
one might conduct Bayesian inference for its pragmatic benefits—specifically, the flexible and
nuanced inferences it affords about the relative plausibility of competing causal hypotheses
(Howson & Urbach, 2006; McElreath, 2020; Strevens, 2012). The existence of prior beliefs
about causal effects, to be updated upon observing data, does not imply that one must choose
rationally between random and optimum assignment given those prior beliefs.

5 Randomisation’s Epistemic Value for Bayesian Inference

To situate the Lady tasting tea within a Bayesian framework, the first step is to provide a prior
distribution on the set of two hypotheses, HFisher (Fisher’s null) and HPerfect (Perfect discrimina-
tion). Let the prior distribution be uniform in which PrðHFisherÞ ¼ 0:5 and PrðHPerfectÞ ¼ 0:5.
However, I will later relax this condition so that the prior can have an arbitrary distribution
so long as the true causal hypothesis is in the prior distribution’s support.

Under randomisation, the true probability mass function (PMF) of the Difference-in-Means is

f ðtÞ ¼
P
z ∈ Ω

1 τ̂ z; yðzÞð Þ ¼ tf gPr Z ¼ zð Þ (5)
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for t ∈ ℝ. The PMF in (5) is unknown since one can observe outcomes under only one assign-
ment. Under whichever assignment is realised, one can construct reference PMFs, analogous to
reference cumulative distribution functions (CDFs) for the calculation of p-values. The refer-
ence PMFs for HFisher and HPerfect implied by randomisation are

f̂ FisherðtÞ ¼
P

w ∈ Ω
1 τ̂ w; yðzÞð Þ ¼ tf gPr W ¼ wð Þ (6)

f̂ PerfectðtÞ ¼
P

w ∈ Ω
1 τ̂ w; wð Þ ¼ tf gPr W ¼ wð Þ; (7)

where w is a relabelling of the assignments in Ω after observing data. Both (6) and (7) can be
calculated becauseHFisher andHPerfect fully specify the potential outcomes schedule. With more
general hypotheses (specifically those that are not sharp in this sense), the calculation of such
reference PMFs would not be trivial.
Each reference PMF in (6) and (7) is implied by the known assignment process and the sup-

position that a given null hypothesis is true. Both PMFs facilitates the calculation of likelihoods.
Random assignment implies that the probability of observing τ̂ z; yðzÞð Þ ¼ 1 if HFisher were true
is 1/70. IfHPerfect were true, randomisation implies that the probability of observing τ̂ z; yðzÞð Þ ¼
1 is 1.
With both a prior and likelihood, the posterior distribution immediately follows from an ap-

plication of Bayes’ rule:

P̂r HFisher ĵτ z; yðzÞð Þð Þ ¼ f̂ Fisher τ̂ z; yðzÞð Þð ÞPr HFisherð Þ
f̂ Fisher τ̂ z; yðzÞð Þð ÞPr HFisherð Þ þ f̂ Perfect τ̂ z; yðzÞð Þð ÞPr HPerfectð Þ ≈ 0:01

P̂r HPerfect ĵτ z; yðzÞð Þð Þ ¼ f̂ Perfect τ̂ z; yðzÞð Þð ÞPr HPerfectð Þ
f̂ Fisher τ̂ z; yðzÞð Þð ÞPr HFisherð Þ þ f̂ Perfect τ̂ z; yðzÞð Þð ÞPr HPerfectð Þ ≈ 0:99:

This posterior distribution intuitively makes sense in that correctly guessing all cups yields
much greater inductive support for Perfect discrimination relative to Fisher’s null. But, unlike
in the significance testing framework, one does not conclude that Fisher’s null is categorically
false.
In this Bayesian framework, Fisherian balance also plays a crucial role in avoiding erroneous

causal conclusions. Figure 2 shows the true and reference PMFs when one or the other hypoth-
esis is, in fact, true.
From Figure 2, it is straightforward to deduce the likelihoods for each causal hypothesis

(when one or the other is true) over all possible assignments. Table 3 presents the distribution
of likelihoods for each causal hypothesis when Fisher’s null is true and when it is false.
Cross-referencing Figure 2 and Table 3 with Figure 1 illustrates the connection between

Bayesian inference and Fisherian balance. For example, when Fisher’s null is true, the assign-
ment that yields a high likelihood for Perfect discrimination (and a low likelihood for Fisher’s
null) is the assignment that yields the covariate imbalance of 1. However, randomisation implies
that the probability of this assignment is low, 1/70. By contrast, when Perfect discrimination is
true, all assignments yield perfect covariate balance and, hence, a high likelihood (1) for the true
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causal hypothesis (Perfect discrimination) and a low likelihood ð1=70Þ for the false causal hy-
pothesis (Fisher’s null).

Consequently, for an agent who is neutral about the plausibility of these two causal hypoth-
eses, Table 3 implies that when Fisher’s null is true, its posterior probability is almost always
greater than the posterior probability of Perfect discrimination. As Table 3 also implies, when
Perfect discrimination is true, its posterior probability is always greater than or equal to the pos-
terior probability of Fisher’s null. In more general terms and with slight technical adjustments,
Leavitt (2023) shows that, for an ex ante neutral agent, the expected value of the 1-dimensional
causal effect that maximises the posterior distribution is equal to the true 1-dimensional causal
effect or, if effects are heterogeneous, to the true ATE.

However, this general property does not necessarily hold for an agent who is not initially neu-
tral about the plausibility of different causal hypotheses, nor is this property especially useful if
there is high variance (over possible assignments) in the causal hypothesis that maximises the
posterior. Above and beyond this property in a finite experiment, randomisation ensures another

Table 3. Distributions of likelihoods for test of Fisher’s null against alternative of Perfect discrimination.

Fisher’s null is true and Perfect discrimination is false

Fisher’s null Perfect discrimination
Likelihood 1/70 16/70 36/70 0 1
Probability 2/70 32/70 36/70 69/70 1/70

Fisher’s null is false and Perfect discrimination is true

Fisher’s null Perfect discrimination
Likelihood 1/70 1
Probability 1 1

FIGURE 2. PMFs of true and reference test statistics for tests of Fisher’s null and Perfect discrimination.
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limiting property under a mild condition on an agent’s prior distribution. With minor technical
adjustments, Leavitt (2023) also shows that, as the size of an experiment increases indefinitely,
an agent’s posterior distribution will concentrate on the true hypothesis with probability tending
to 1 so long as the true effect is in the support of the prior.
One can begin to see this limiting property as the size of an experiment increases indefinitely

from the Lady tasting tea with only N ¼ 8. As Figure 2 and Table 3 show, when Fisher’s null is
true, the probability that Perfect discrimination’s likelihood is equal to 0 is 69/70. Since the like-
lihood of Fisher’s null when it is true is bounded away from 0, the probability that the posterior
of Fisher’s null is equal to 1 is 69/70. This probability will only become higher as the size of the
experiment increases indefinitely, holding the experiment’s other features constant. Ultimately,
given any prior whose support includes the true causal hypothesis, so long as the experiment
is sufficiently large, the true causal hypothesis (whether Perfect discrimination or Fisher’s null)
will receive a high posterior probability (however defined) with probability arbitrarily close to 1.

6 Conclusion

Although significance testing and Bayesian inference differ, randomisation plays an essential
role in ensuring that both modes of inference satisfy epistemic properties on their own terms.
For significance testing, properties of p-values are derived from the CDFs of the true and refer-
ence distributions. By contrast, for Bayesian inference, properties of likelihoods are derived
from the PMFs of the true and reference distributions. But both functions are implied by the
same randomisation procedure and, in both modes of inference, randomisation is valuable for
the same reasons.
In general, randomisation implies that, in expectation and with probability limiting to 1 as the

size of an experiment increases indefinitely, the Difference-in-Means will be equal to the mean
of the reference distribution implied by a true causal effect and will lie in one of the tails of the
reference distribution implied by a false causal effect. With slight technical adjustments (Leav-
itt, 2023), regardless of whether one calculates p-values or likelihoods, evidence that lies in the
tail of a reference distribution provides less evidential support for a causal hypothesis than ev-
idence that lies in the center of a reference distribution. Consequently, randomisation ensures
that false causal hypotheses receive less evidential support than true causal hypotheses in the
frameworks of both significance testing and Bayesian inference.
Fisherian balance is crucial to these epistemic properties implied by randomisation. Fisherian

balance controls the probability of chance imbalances that would lead to erroneous conclusions.
As this paper has aimed to establish, the value of Fisherian balance need not be understood
against the background of one specific mode of drawing such conclusions.

Notes
1The ‘expected distance’ and the ‘expected data’ refer to two different sources of randomness.

The former refers to a subjective probability measure (i.e. a probability measure derived from a
rational agent’s preference structure) over possible states of the world that imply particular
values of the unknown causal target. The latter refers to the act itself, which, under deterministic
rather than random assignment, would be the expectation of a degenerate distribution.
2Under Fisher’s null, yð1Þ ¼ yð0Þ, so there is effectively only one vector of potential outcomes;

hence, covariate imbalance refers to the mean difference between treated and control groups in
this one potential outcomes vector. By contrast, under Perfect discrimination, there are two
vectors of potential outcomes, yð1Þ and yð0Þ. However, all allowable assignments yield the same
mean difference between treated and control groups on both yð1Þ and yð0Þ. Hence, covariate
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imbalance refers to this single mean difference between treated and control groups for both of
these vectors of potential outcomes.
3Rosenbaum (2002, 64) refers to this high rejection probability of Fisher’s null when Perfect

discrimination is true as the ‘surprising power of the Lady tasting tea’.
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APPENDIX A: Proof of Proposition 1

Proof Suppose SUTVA and that an assignment, z, yields balance in the treated and control groups'
means of treated potential outcomes, that is, following Equation 2:

1

n1

� �
∑
N

i¼1
ziyið1Þ−

1

n0

� �
∑
N

i¼1
ð1−ziÞyið1Þ ¼ 0: (A1)

Then write the mean of treated potential outcomes under assignment z as

1

n1

� �
∑
N

i¼1
ziyið1Þ ¼

1

n1

� �
∑
N

i¼1
ziyið1Þ

� �
n1
N

� �
þ N−n1

N

� �� �
(A2)

¼ n1
N

� � 1

n1

� �
∑
N

i¼1
ziyið1Þ

� �
þ N−n1

N

� �
1

n1

� �
∑
N

i¼1
ziyið1Þ

� �
: (A3)
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Equation A1 then implies that the mean of treated potential outcomes under assignment z in (A3)
is

n1
N

� � 1

n1

� �
∑
N

i¼1
ziyið1Þ

� �
þ N−n1

N

� �
1

N−n1

� �
∑
N

i¼1
ð1−ziÞyið1Þ

� �
; (A4)

which is equal to the true mean of treated potential outcomes, denoted by yð1Þ, since (A4) is the av-
erage of treated potential outcomes in the treated and control groups, weighted by the respective
proportions of units in treatment and control. That is, if means of treated potential outcomes are
balanced between treatment and control groups, then the mean of (observed) treated potential
outcomes in the treated group must be equal to the mean of all treated potential outcomes (both
observed and unobserved). Analogous logic applies to control potential outcomes, thereby implying
that, if balance in means holds for two special covariates (treated and control potential outcomes),
then the difference‐in‐means is exactly equal to the ATE. ◻
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