Conservative estimation of Difference-in-Means estimator’s

variance under random assignment*

Thomas Leavitt

The expression for the variance of the Difference-in-Means estimator, Varg [7], is
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Absent additional assumptions, we cannot unbiasedly estimate Varg [7]. We can unbiasedly esti-
mate the first two terms of Varg [7] in Equation (1), o2(yr) and 02 (yc), but not the third term,
on(Yc, yr), because no two potential outcomes of the same unit are observable. To conservatively
estimate Varg [7], we will derive a quantity we can unbiasedly estimate that is always at least as

great as the true variance, Varg [7].
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The Cauchy-Schwarz inequality implies that

on(yc, yr) < Vo2(yc)o(yr)

and the AM-GM inequality further implies that
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Hence, it follows that 20, (yc, yr) < 02(yc)+02(yr). Substituting o (yc)+02(yr) for 20, (yc, yr)
therefore yields a tight upper bound for the true variance of the Difference-in-Means estimator:
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We can unbiasedly estimate the two unknown parameters 02 (yc) and o2(yr). Following Cochran



(1977, Theorem 2.4), unbiased estimators of 02(yc) and o2(yr) are
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Therefore, the conservative estimator of the variance of the Difference-in-Means estimator is
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This estimator is conservative in that Eq [\//a\rg [ﬂ] > Varg [7]. However, the estimator is unbiased

when individual causal effects are constant, which implies that 20, (yc, yr) = 02(yc) + o2 (yr).

We can also see that the conservative variance estimator is unbiased when individual causal ef-
fects are constant by examining the alternative expression for the Difference-in-Means estimator’s

variance given by
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The conservative variance estimator equivalent to Equation (5) is
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assuming that ny > 2 and ng > 2.

This estimator in Equation (10) is conservative in that Egq [\//a\rg [%]} > Varg [7]. However, this
estimator of the Difference-in-Means estimator’s variance is unbiased when individual causal effects

are constant, i.e., SZ(7) = 0.
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