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The expression for the variance of the Difference-in-Means estimator, VarΩ [τ̂ ], is

(1) VarΩ [τ̂ ] =
1

n− 1

(
nCσ

2
n(yT )

nT

+
nTσ

2
n(yC)

nC

+ 2σn(yC ,yT )

)
,

where

σ2
n(yT ) =

(
1

n

) n∑
i=1

yT i −
1

n

n∑
i=1

yT i

2

(2)

σ2
n(yC) =

(
1

n

) n∑
i=1

yCi −
1

n

n∑
i=1

yCi

2

(3)

σn(yC ,yT ) =

(
1

n

) n∑
i=1

yCi −
1

n

n∑
i=1

yCi

yT i −
1

n

n∑
i=1

yT i

 .(4)

Absent additional assumptions, we cannot unbiasedly estimate VarΩ [τ̂ ]. We can unbiasedly esti-
mate the first two terms of VarΩ [τ̂ ] in Equation (1), σ2

n(yT ) and σ2
n(yC), but not the third term,

σn(yC ,yT ), because no two potential outcomes of the same unit are observable. To conservatively
estimate VarΩ [τ̂ ], we will derive a quantity we can unbiasedly estimate that is always at least as
great as the true variance, VarΩ [τ̂ ].
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The Cauchy-Schwarz inequality implies that
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and the AM-GM inequality further implies that
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Hence, it follows that 2σn(yC ,yT ) ≤ σ2
n(yC)+σ2

n(yT ). Substituting σ2
n(yC)+σ2

n(yT ) for 2σn(yC ,yT )

therefore yields a tight upper bound for the true variance of the Difference-in-Means estimator:
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We can unbiasedly estimate the two unknown parameters σ2
n(yC) and σ2

n(yT ). Following Cochran
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(1977, Theorem 2.4), unbiased estimators of σ2
n(yC) and σ2

n(yT ) are
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Therefore, the conservative estimator of the variance of the Difference-in-Means estimator is

(5) V̂arΩ [τ̂ ] =
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This estimator is conservative in that EΩ

[
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]
≥ VarΩ [τ̂ ]. However, the estimator is unbiased

when individual causal effects are constant, which implies that 2σn(yC ,yT ) = σ2
n(yC) + σ2

n(yT ).

We can also see that the conservative variance estimator is unbiased when individual causal ef-
fects are constant by examining the alternative expression for the Difference-in-Means estimator’s
variance given by
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The conservative variance estimator equivalent to Equation (5) is
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1

nT

Ŝ2
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,

assuming that nT ≥ 2 and nC ≥ 2.

This estimator in Equation (10) is conservative in that EΩ

[
V̂arΩ [τ̂ ]

]
≥ VarΩ [τ̂ ]. However, this

estimator of the Difference-in-Means estimator’s variance is unbiased when individual causal effects
are constant, i.e., S2

n(τ ) = 0.
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